scholarly journals Effect of heat treatment on the microstructure characteristics and microhardness of a novel γ′ nickel-based superalloy by laser powder bed fusion

2021 ◽  
pp. 100232
Author(s):  
Jinghao Xu ◽  
Fiona Schulz ◽  
Ru Lin Peng ◽  
Eduard Hryha ◽  
Johan Moverare
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4930
Author(s):  
Jinghao Xu ◽  
Hans Gruber ◽  
Ru Lin Peng ◽  
Johan Moverare

An experimental printable γ′-strengthened nickel-based superalloy, MAD542, is proposed. By process optimization, a crack-free component with less than 0.06% defect was achieved by laser powder bed fusion (LPBF). After post-processing by solution heat treatment, a recrystallized structure was revealed, which was also associated with the formation of annealing twins. After the aging treatment, 60–65% γ′ precipitates were obtained with a cuboidal morphology. The success of printing and post-processing the new MAD542 superalloy may give new insights into alloy design approaches for additive manufacturing.


2018 ◽  
Vol 152 ◽  
pp. 200-214 ◽  
Author(s):  
Fan Zhang ◽  
Lyle E. Levine ◽  
Andrew J. Allen ◽  
Mark R. Stoudt ◽  
Greta Lindwall ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Felix Clemens Ewald ◽  
Florian Brenne ◽  
Tobias Gustmann ◽  
Malte Vollmer ◽  
Philipp Krooß ◽  
...  

In order to overcome constraints related to crack formation during additive processing (laser powder bed fusion, L-BPF) of Fe-Mn-Al-Ni, the potential of high-temperature L-PBF processing was investigated in the present study. The effect of the process parameters on crack formation, grain structure, and phase distribution in the as-built condition, as well as in the course of cyclic heat treatment was examined by microstructural analysis. Optimized processing parameters were applied to fabricate cylindrical samples featuring a crack-free and columnar grained microstructure. In the course of cyclic heat treatment, abnormal grain growth (AGG) sets in, eventually promoting the evolution of a bamboo like microstructure. Testing under tensile load revealed a well-defined stress plateau and reversible strains of up to 4%.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1067 ◽  
Author(s):  
Florian Huber ◽  
Thomas Papke ◽  
Christian Scheitler ◽  
Lukas Hanrieder ◽  
Marion Merklein ◽  
...  

The aim of this work is to investigate the β-Ti-phase-stabilizing effect of vanadium and iron added to Ti-6Al-4V powder by means of heterogeneous powder mixtures and in situ alloy-formation during laser powder bed fusion (L-PBF). The resulting microstructure was analyzed by metallographic methods, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The mechanical properties were characterized by compression tests, both prior to and after heat-treating. Energy dispersive X-ray spectroscopy showed a homogeneous element distribution, proving the feasibility of in situ alloying by LPBF. Due to the β-phase-stabilizing effect of V and Fe added to Ti-6Al-4V, instead of an α’-martensitic microstructure, an α/β-microstructure containing at least 63.8% β-phase develops. Depending on the post L-PBF heat-treatment, either an increased upsetting at failure (33.9%) compared to unmodified Ti-6Al-4V (28.8%), or an exceptional high compressive yield strength (1857 ± 35 MPa compared to 1100 MPa) were measured. The hardness of the in situ alloyed material ranges from 336 ± 7 HV0.5, in as-built condition, to 543 ± 13 HV0.5 after precipitation-hardening. Hence, the range of achievable mechanical properties in dependence of the post-L-PBF heat-treatment can be significantly expanded in comparison to unmodified Ti-6Al-4V, thus providing increased flexibility for additive manufacturing of titanium parts.


Sign in / Sign up

Export Citation Format

Share Document