scholarly journals Role of tantalum concentration, processing temperature, and strain-rate on the mechanical behavior of copper-tantalum alloys

2021 ◽  
Vol 208 ◽  
pp. 116706
Author(s):  
S. Srinivasan ◽  
S. Sharma ◽  
S. Turnage ◽  
B.C. Hornbuckle ◽  
C. Kale ◽  
...  
Author(s):  
James D. Paramore ◽  
Brady G. Butler ◽  
Matthew K. Dunstan ◽  
Hongjoo Rhee ◽  
Haitham El Kadiri ◽  
...  

2006 ◽  
Vol 21 (8) ◽  
pp. 2093-2097 ◽  
Author(s):  
Maximilien Vanleene ◽  
Pierre-Emmanuel Mazeran ◽  
Marie-Christine Ho Ba Tho

Investigations of bone mechanical properties are of major importance for bone pathology research, biomaterials, and development of in vivo bone characterization devices. Because of its complex multiscale structure, assessment of bone microstructure is an important step for understanding its mechanical behavior. In this study, we have investigated the strain rate influence on the mechanical properties of interstitial lamellae on two human femur bone samples. Nanoindentation tests were performed with the continuous stiffness measurement technique. Young's modulus and hardness were calculated using the Oliver and Pharr method. A statistical significant influence of strain rate on hardness was found (p < 0.05) showing a viscoplastic behavior of interstitial bone at the micrometer scale. This phenomenon may reflect the role of the organic component in the bone matrix mechanical behavior.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2021
Author(s):  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Aneta Łukaszek-Sołek ◽  
Krystian Zyguła ◽  
Marek Wojtaszek

The flow behavior of metastable β titanium alloy was investigated basing on isothermal hot compression tests performed on Gleeble 3800 thermomechanical simulator at near and above β transus temperatures. The flow stress curves were obtained for deformation temperature range of 800–1100 °C and strain rate range of 0.01–100 s−1. The strain compensated constitutive model was developed using the Arrhenius-type equation. The high correlation coefficient (R) as well as low average absolute relative error (AARE) between the experimental and the calculated data confirmed a high accuracy of the developed model. The dynamic material modeling in combination with the Prasad stability criterion made it possible to generate processing maps for the investigated processing temperature, strain and strain rate ranges. The high material flow stability under investigated deformation conditions was revealed. The microstructural analysis provided additional information regarding the flow behavior and predominant deformation mechanism. It was found that dynamic recovery (DRV) was the main mechanism operating during the deformation of the investigated β titanium alloy.


1992 ◽  
Vol 114 (2) ◽  
pp. 185-192 ◽  
Author(s):  
R. G. Ross ◽  
L. C. Wen ◽  
G. R. Mon ◽  
E. Jetter

With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.


2018 ◽  
Vol 51 (2) ◽  
pp. 221-226 ◽  
Author(s):  
Yuji Kitamura ◽  
Kiyoka Okada ◽  
Hiroyasu Masunaga ◽  
Masamichi Hikosaka

Sign in / Sign up

Export Citation Format

Share Document