scholarly journals Cooperative effects of fibronectin matrix assembly and initial cell–substrate adhesion strength in cellular self-assembly

2016 ◽  
Vol 32 ◽  
pp. 198-209 ◽  
Author(s):  
James R. Brennan ◽  
Denise C. Hocking
1993 ◽  
Vol 331 ◽  
Author(s):  
Kelly A. Ward ◽  
Jun-Lin Guan ◽  
Daniel A. Hammer

AbstractCell-substratum adhesion is important in wound healing [4], embryogenic development [11], tissue architecture [6], and metastasis [7]. Integrins constitute a major class of heterodimeric cell-surface glycoproteins involved in receptor-mediated adhesion to the extracellular matrix (ECM). Focal contacts are regions of the cell-substratum adhesion in which clusters of integrin receptors connect the cytoskeleton to extracellular matrix molecules such as fibronectin. Focal contacts strengthen cell-substrate adhesion, and are sites of biochemical activity. Since cell adhesion strength in part depends on the cell's ability to cluster receptors and cytoskeleton into focal contacts, the integrity of the focal contact, and hence a cell's adhesive strength, will depend both on integrin-cytoskeletal binding as well as integrin-ligand binding.Using a centrifugation assay, we have quantified cell-substratum adhesion strength of mouse 3T3 cells transfected with the avian β1 integrin receptor (wild type), including various deletion mutants of its cytoplasmic domain, to surfaces containing varying concentrations of CSAT, a monoclonal antibody against the extracellular domain of the avian β1 subunit. For all the transfectants, adhesion strength decreases with decreasing CSAT concentration and increasing centrifugal strength. Different truncations of the cytoplasmic domain lead to different levels of adhesion. There is no simple correlation between the length of the cytoplasmic domain and the strength of adhesion.


2015 ◽  
Vol 112 (16) ◽  
pp. 5045-5050 ◽  
Author(s):  
Erin Barnhart ◽  
Kun-Chun Lee ◽  
Greg M. Allen ◽  
Julie A. Theriot ◽  
Alex Mogilner

Cells are dynamic systems capable of spontaneously switching among stable states. One striking example of this is spontaneous symmetry breaking and motility initiation in fish epithelial keratocytes. Although the biochemical and mechanical mechanisms that control steady-state migration in these cells have been well characterized, the mechanisms underlying symmetry breaking are less well understood. In this work, we have combined experimental manipulations of cell−substrate adhesion strength and myosin activity, traction force measurements, and mathematical modeling to develop a comprehensive mechanical model for symmetry breaking and motility initiation in fish epithelial keratocytes. Our results suggest that stochastic fluctuations in adhesion strength and myosin localization drive actin network flow rates in the prospective cell rear above a critical threshold. Above this threshold, high actin flow rates induce a nonlinear switch in adhesion strength, locally switching adhesions from gripping to slipping and further accelerating actin flow in the prospective cell rear, resulting in rear retraction and motility initiation. We further show, both experimentally and with model simulations, that the global levels of adhesion strength and myosin activity control the stability of the stationary state: The frequency of symmetry breaking decreases with increasing adhesion strength and increases with increasing myosin contraction. Thus, the relative strengths of two opposing mechanical forces—contractility and cell−substrate adhesion—determine the likelihood of spontaneous symmetry breaking and motility initiation.


1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

1992 ◽  
Vol 118 (5) ◽  
pp. 1235-1244 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.


1986 ◽  
Vol 103 (5) ◽  
pp. 1679-1687 ◽  
Author(s):  
M C Beckerle

A new protein found at sites of cell-substrate adhesion has been identified by analysis of a nonimmune rabbit serum. By indirect immunofluorescence this serum stains focal contacts (adhesion plaques) and the associated termini of actin filament bundles in cultured chicken cells. Western immunoblot analysis of total chick embryo fibroblast protein demonstrated an 82-kD polypeptide to be the major protein recognized by the unfractionated serum. This 82-kD protein is immunologically distinct from other known adhesion plaque proteins such as vinculin, talin, alpha-actinin, and fimbrin. Antibody affinity-purified against the electrophoretically isolated, nitrocellulose-bound 82-kD protein retained the ability to stain the area of the adhesion plaque, which confirms that the 82-kD protein is indeed a constituent of the focal contact. The 82-kD polypeptide has a basic isoelectric point relative to actin and fibronectin, and it appears to be very low in abundance. The 82-kD protein is ubiquitous in chicken embryo tissues. However, it appears to be more abundant in fibroblasts and smooth muscle than in brain or liver. Intermediate levels of the protein were detected in skeletal and cardiac muscle. The subcellular distribution of the 82-kD protein raises the possibility that this polypeptide is involved in linking actin filaments to the plasma membrane at sites of substrate attachment or regulating these dynamic interactions.


Sign in / Sign up

Export Citation Format

Share Document