Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles

2016 ◽  
Vol 33 ◽  
pp. 96-109 ◽  
Author(s):  
Heyong Yin ◽  
Yu Wang ◽  
Zhen Sun ◽  
Xun Sun ◽  
Yichi Xu ◽  
...  
Author(s):  
Sharon Si Heng Tan ◽  
Calvin Kai En Tjio ◽  
Joshua Rui Yen Wong ◽  
Keng Lin Wong ◽  
Jacob Ren Jie Chew ◽  
...  

2020 ◽  
Vol 5 (38) ◽  
pp. eaay6626 ◽  
Author(s):  
Gwangjun Go ◽  
Sin-Gu Jeong ◽  
Ami Yoo ◽  
Jiwon Han ◽  
Byungjeon Kang ◽  
...  

Targeted cell delivery by a magnetically actuated microrobot with a porous structure is a promising technique to enhance the low targeting efficiency of mesenchymal stem cell (MSC) in tissue regeneration. However, the relevant research performed to date is only in its proof-of-concept stage. To use the microrobot in a clinical stage, biocompatibility and biodegradation materials should be considered in the microrobot, and its efficacy needs to be verified using an in vivo model. In this study, we propose a human adipose–derived MSC–based medical microrobot system for knee cartilage regeneration and present an in vivo trial to verify the efficacy of the microrobot using the cartilage defect model. The microrobot system consists of a microrobot body capable of supporting MSCs, an electromagnetic actuation system for three-dimensional targeting of the microrobot, and a magnet for fixation of the microrobot to the damaged cartilage. Each component was designed and fabricated considering the accessibility of the patient and medical staff, as well as clinical safety. The efficacy of the microrobot system was then assessed in the cartilage defect model of rabbit knee with the aim to obtain clinical trial approval.


2020 ◽  
Vol 22 (1) ◽  
pp. 300
Author(s):  
Gensuke Okamura ◽  
Kosuke Ebina ◽  
Makoto Hirao ◽  
Ryota Chijimatsu ◽  
Yasukazu Yonetani ◽  
...  

Synovial mesenchymal stem cell (SMSC) is the promising cell source of cartilage regeneration but has several issues to overcome such as limited cell proliferation and heterogeneity of cartilage regeneration ability. Previous reports demonstrated that basic fibroblast growth factor (bFGF) can promote proliferation and cartilage differentiation potential of MSCs in vitro, although no reports show its beneficial effect in vivo. The purpose of this study is to investigate the promoting effect of bFGF on cartilage regeneration using human SMSC in vivo. SMSCs were cultured with or without bFGF in a growth medium, and 2 × 105 cells were aggregated to form a synovial pellet. Synovial pellets were implanted into osteochondral defects induced in the femoral trochlea of severe combined immunodeficient mice, and histological evaluation was performed after eight weeks. The presence of implanted SMSCs was confirmed by the observation of human vimentin immunostaining-positive cells. Interestingly, broad lacunae structures and cartilage substrate stained by Safranin-O were observed only in the bFGF (+) group. The bFGF (+) group had significantly higher O’Driscoll scores in the cartilage repair than the bFGF (−) group. The addition of bFGF to SMSC growth culture may be a useful treatment option to promote cartilage regeneration in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongli Li ◽  
Junxiu Zhang ◽  
Zijia Liu ◽  
Yuanyuan Gong ◽  
Zhi Zheng

Abstract Background and aim Subretinal fibrosis resulting from neovascular age-related macular degeneration (nAMD) is one of the major causes of serious and irreversible vision loss worldwide, and no definite and effective treatment exists currently. Retinal pigmented epithelium (RPE) cells are crucial in maintaining the visual function of normal eyes and its epithelial–mesenchymal transition (EMT) is associated with the pathogenesis of subretinal fibrosis. Stem cell-derived exosomes have been reported to play a crucial role in tissue fibrosis by transferring their molecular contents. This study aimed to explore the effects of human umbilical cord-derived mesenchymal stem cell exosomes (hucMSC-Exo) on subretinal fibrosis in vivo and in vitro and to investigate the anti-fibrotic mechanism of action of hucMSC-Exo. Methods In this study, human umbilical cord-derived mesenchymal stem cells (hucMSCs) were successfully cultured and identified, and exosomes were isolated from the supernatant by ultracentrifugation. A laser-induced choroidal neovascularization (CNV) and subretinal fibrosis model indicated that the intravitreal administration of hucMSC-Exo effectively alleviated subretinal fibrosis in vivo. Furthermore, hucMSC-Exo could efficaciously suppress the migration of retinal pigmented epithelial (RPE) cells and promote the mesenchymal–epithelial transition by delivering miR-27b-3p. The latent binding of miR-27b-3p to homeobox protein Hox-C6 (HOXC6) was analyzed by bioinformatics prediction and luciferase reporter assays. Results This study showed that the intravitreal injection of hucMSC-Exo effectively ameliorated laser-induced CNV and subretinal fibrosis via the suppression of epithelial–mesenchymal transition (EMT) process. In addition, hucMSC-Exo containing miR-27b repressed the EMT process in RPE cells induced by transforming growth factor-beta2 (TGF-β2) via inhibiting HOXC6 expression. Conclusions The present study showed that HucMSC-derived exosomal miR-27b could reverse the process of EMT induced by TGF-β2 via inhibiting HOXC6, indicating that the exosomal miR-27b/HOXC6 axis might play a vital role in ameliorating subretinal fibrosis. The present study proposed a promising therapeutic agent for treating ocular fibrotic diseases and provided insights into the mechanism of action of hucMSC-Exo on subretinal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document