scholarly journals Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues

2020 ◽  
Vol 105 ◽  
pp. 253-262 ◽  
Author(s):  
Sébastien de Bournonville ◽  
Sarah Vangrunderbeeck ◽  
Hong Giang T. Ly ◽  
Carla Geeroms ◽  
Wim M. De Borggraeve ◽  
...  
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3039 ◽  
Author(s):  
Fernanda Bribiesca-Contreras ◽  
William I. Sellers

BackgroundGross dissection is a widespread method for studying animal anatomy, despite being highly destructive and time-consuming. X-ray computed tomography (CT) has been shown to be a non-destructive alternative for studying anatomical structures. However, in the past it has been limited to only being able to visualise mineralised tissues. In recent years, morphologists have started to use traditional X-ray contrast agents to allow the visualisation of soft tissue elements in the CT context. The aim of this project is to assess the ability of contrast-enhanced micro-CT (μCT) to construct a three-dimensional (3D) model of the musculoskeletal system of the bird wing and to quantify muscle geometry and any systematic changes due to shrinkage. We expect that this reconstruction can be used as an anatomical guide to the sparrowhawk wing musculature and form the basis of further biomechanical analysis of flight.MethodsA 3% iodine-buffered formalin solution with a 25-day staining period was used to visualise the wing myology of the sparrowhawk (Accipiter nisus). μCT scans of the wing were taken over the staining period until full penetration of the forelimb musculature by iodine was reached. A 3D model was reconstructed by manually segmenting out the individual elements of the avian wing using 3D visualisation software.ResultsDifferent patterns of contrast were observed over the duration of the staining treatment with the best results occurring after 25 days of staining. Staining made it possible to visualise and identify different elements of the soft tissue of the wing. Finally, a 3D reconstruction of the musculoskeletal system of the sparrowhawk wing is presented and numerical data of muscle geometry is compared to values obtained by dissection.DiscussionContrast-enhanced μCT allows the visualisation and identification of the wing myology of birds, including the smaller muscles in the hand, and provides a non-destructive way for quantifying muscle volume with an accuracy of 96.2%. By combining contrast-enhanced μCT with 3D visualisation techniques, it is possible to study the individual muscles of the forelimb in their original position and 3D design, which can be the basis of further biomechanical analysis. Because the stain can be washed out post analysis, this technique provides a means of obtaining quantitative muscle data from museum specimens non-destructively.


2020 ◽  
Vol 27 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
Ana Prates Soares ◽  
Uwe Blunck ◽  
Kerstin Bitter ◽  
Sebastian Paris ◽  
Alexander Rack ◽  
...  

Bonding of resin composite fillings, for example following root-canal treatment, is a challenge because remaining gaps grow and lead to failure. Here, phase-contrast-enhanced micro-computed tomography (PCE-CT) is used to explore methods of non-destructive quantification of the problem, so that countermeasures can be devised. Five human central incisors with damaged crowns were root-filled followed by restoration with a dental post. Thereafter, the crowns were rebuilt with a resin composite that was bonded conventionally to the tooth with a dental adhesive system (Futurabond U). Each sample was imaged by PCE-CT in a synchrotron facility (ID19, European Synchrotron Radiation Facility) with a pixel size of 650 nm. The reconstructed datasets from each sample were segmented and analysed in a semi-automated manner using ImageJ. PCE-CT at sub-micrometre resolution provided images with an impressive increased contrast and detail when compared with laboratory micro-computed tomography. The interface between the dental adhesive and the tooth was often strongly disrupted by the presence of large debonded gaps (on average 34% ± 15% on all surfaces). The thickness of the gaps spanned 2 µm to 16 µm. There was a large variability in the distribution of gaps within the bonding area in each sample, with some regions around the canal exhibiting up to 100% discontinuity. Although only several micrometres thick, the extensive wide gaps may serve as gateways to biofilm leakage, leading to failure of the restorations. They can also act as stress-raising `cracks' that are likely to expand over time in response to cyclic mechanical loading as a consequence of mastication. The observations here show how PCE-CT can be used as a non-destructive quantitative tool for understanding and improving the performance of clinically used bonded dental restorations.


Sign in / Sign up

Export Citation Format

Share Document