scholarly journals Corrigendum to ‘Ureter tissue engineering with vessel extracellular matrix and differentiated urine-derived stem cells’[Acta Biomaterialia 88 (2019), 266-279]

Author(s):  
Zhankui Zhao ◽  
Deqian Liu ◽  
Ye Chen ◽  
Qingsheng Kong ◽  
Dandan Li ◽  
...  
2018 ◽  
Vol 24 (1-2) ◽  
pp. 145-156 ◽  
Author(s):  
Navaneethakrishnan Krishnamoorthy ◽  
Yuan‐Tsan Tseng ◽  
Poornima Gajendrarao ◽  
Padmini Sarathchandra ◽  
Ann McCormack ◽  
...  

2019 ◽  
Vol 7 (16) ◽  
pp. 2703-2713 ◽  
Author(s):  
Na Li ◽  
Alex P. Rickel ◽  
Hanna J. Sanyour ◽  
Zhongkui Hong

Stem cell differentiation on a decellularized native blood vessel scaffold under mechanical stimulation for vascular tissue engineering.


2014 ◽  
Vol 5 ◽  
pp. BTRI.S12331 ◽  
Author(s):  
John W. Cassidy

Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body's own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “of-the-self” organs grown from patients' own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell's microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.


Author(s):  
Jessica L. LoSurdo ◽  
Douglas W. Chew ◽  
Alejandro Nieponice ◽  
David A. Vorp

The primary goal of tissue engineering is to develop a biological, mechanically-robust, and anti-thrombogenic vascular graft to replace diseased or damaged tissue and organs [1]. For example, researchers have incorporated smooth muscle cells (SMCs) into extracellular matrix to provide a living, functional conduits with the intended purpose of replacing SMC-containing tubes, such as the blood vessel, urethra, esophagus, intestine, etc. Although the preferred source is autologous cells to avoid immunological rejection, adult SMCs are difficult to obtain and expand. An alternative source of autologous cells could be bone marrow derived stem cells (BMSCs), which differentiate toward mesenchymal and hematopoietic lineages [2].


2012 ◽  
Vol 18 (1-2) ◽  
pp. 80-92 ◽  
Author(s):  
Ji Suk Choi ◽  
Beob Soo Kim ◽  
Jae Dong Kim ◽  
Young Chan Choi ◽  
Hee Young Lee ◽  
...  

Author(s):  
Zhongjuan Xu ◽  
Junjun Cao ◽  
Zhe Zhao ◽  
Yong Qiao ◽  
Xingzhi Liu ◽  
...  

Abstract The construction of microvascular network is one of the greatest challenges for tissue engineering and cell therapy. Endothelial cells are essential for the construction of network of blood vessels. However, their application meets challenges in clinic due to the limited resource of autologous endothelium. Mesenchymal stem cells (MSCs) can effectively promote the angiogenesis in ischemic tissues for their abilities of endothelial differentiation and paracrine, and abundant sources. Extracellular matrix (ECM) has been widely used as an ideal biomaterial to mimic cellular microenvironment for tissue engineering due to its merits of neutrality, good biocompatibility, degradability, and controllability. In this study, a functional cell derived ECM biomaterial enriched with VEGFA and bFGF by expressing the collagen-binding domain (CBD) fused factor genes in host cells was prepared. This material could induce endothelial differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) and promote angiogenesis, which may improve the healing effect of skin injury. Our research not only provides a functional ECM material to inducing angiogenesis by inducing endothelial differentiation of hUCMSCs, but also shed light on the ubiquitous approaches to endow ECM materials different functions by enriching different factors. This study will greatly benefit tissue engineering and regenerative medicine researches.


2010 ◽  
Vol 16 (5) ◽  
pp. 1515-1526 ◽  
Author(s):  
Yuan-Min Lin ◽  
Alison Zhang ◽  
Helen J. Rippon ◽  
Alexander Bismarck ◽  
Anne E. Bishop

Sign in / Sign up

Export Citation Format

Share Document