Lappaconitine sulfate induces apoptosis and G0/G1 phase cell cycle arrest by PI3K/AKT signaling pathway in human non-small cell lung cancer A549 cells

2020 ◽  
Vol 122 (5) ◽  
pp. 151557
Author(s):  
Danni Qu ◽  
Junyi Ma ◽  
Na Song ◽  
Ling Hui ◽  
Lihua Yang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Menghuan Guo ◽  
Zhiyuan Liu ◽  
Jing Si ◽  
Jinhua Zhang ◽  
Jin Zhao ◽  
...  

Lung cancer remains the leading cause of cancer death worldwide. Late diagnosis, chemoresistance, and metastasis are the main reasons for the high mortality rate of lung cancer. Therefore, the development of other treatments is urgent. Cediranib (CED), a vascular endothelial growth factor receptor (VEGFR) kinase inhibitor, shows promising antitumour activities in various cancers including lung cancer. Here, we explored the effects and the underlying molecular mechanism of CED on non-small-cell lung cancer (NSCLC) cell line A549 cells in vitro. Our results show that CED could inhibit A549 cell proliferation and cloning formation. Meanwhile, G1 phase cell cycle arrest was also found, as featured by the increased proportion of G1 phase cells as well as the reduction of G1 phase relative proteins CDK4/cyclin D1 and CDK2/cyclin E. Moreover, the ratio of LC3-II/LC3-I was elevated significantly in CED-treated groups compared with the controls. Furthermore, the expression of p-Akt, p-P38, p-Erk1/2, and p-mTOR proteins was decreased obviously in the treatment groups. These results suggest that CED could induce apoptosis and G1 phase cell cycle arrest in A549 cells. Meanwhile, CED may induce autophagy through MAPK/Erk1/2 and Akt/mTOR signal pathway in A549 cells.


Metallomics ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 1014 ◽  
Author(s):  
Sabine H. van Rijt ◽  
Isolda Romero-Canelón ◽  
Ying Fu ◽  
Steve D. Shnyder ◽  
Peter J. Sadler

2020 ◽  
Vol 27 (1) ◽  
pp. 107327481989797
Author(s):  
Kun-Ming Wu ◽  
Chih-Wen Chi ◽  
Jerry Cheng-Yen Lai ◽  
Yu-Jen Chen ◽  
Yu Ru Kou

TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 μM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase–related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.


2020 ◽  
Vol 326 ◽  
pp. 109133 ◽  
Author(s):  
Virginia Marcia Concato ◽  
Fernanda Tomiotto-Pellissier ◽  
Taylon Felipe Silva ◽  
Manoela Daiele Gonçalves ◽  
Bruna Taciane da Silva Bortoleti ◽  
...  

2004 ◽  
Vol 212 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Ya-Ling Hsu ◽  
Po-Lin Kuo ◽  
Chi-Feng Liu ◽  
Chun-Ching Lin

Author(s):  
Xiaoxia Zhao ◽  
Ning Zhang ◽  
Yingying Huang ◽  
Xiaojing Dou ◽  
Xiaolin Peng ◽  
...  

Lansoprazole (Lpz) is an FDA-approved proton pump inhibitor (PPI) drug for the therapy of acid-related diseases. Aiming to explore the new application of old drugs, we recently investigated the antitumor effect of Lpz. We demonstrated that the PPI Lpz played a tumor suppressive role in non-small cell lung cancer (NSCLC) A549 cells. Mechanistically, Lpz induced apoptosis and G0/G1 cell cycle arrest by inhibiting the activation of signal transducer and activator of transcription (Stat) 3 and the phosphoinositide 3-kinase (PI3K)/Akt and Raf/ERK pathways. In addition, Lpz inhibited autophagy by blocking the fusion of autophagosomes with lysosomes. Furthermore, Lpz in combination with gefitinib (Gef) showed a synergistic antitumor effect on A549 cells, with enhanced G0/G1 cell cycle arrest and apoptosis. The combination inhibited Stat3 phosphorylation, PI3K/Akt and Raf/ERK signaling, affecting cell cycle-related proteins such as p-Rb, cyclin D1 and p27, as well as apoptotic proteins such as Bax, Bcl-2, caspase-3, and poly (ADP-ribose) polymerase (PARP). In vivo, coadministration with Lpz and Gef significantly attenuated the growth of A549 nude mouse xenograft models. These findings suggest that Lpz might be applied in combination with Gef for NSCLC therapy, but further evidence is required.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1559
Author(s):  
Yong-Li Zhang ◽  
Gui-Lin Chen ◽  
Ye Liu ◽  
Xiao-Cui Zhuang ◽  
Ming-Quan Guo

Warburgia ugandensis Sprague (WU) is a traditional medicinal plant used for the treatment of various diseases, including cancer, in Africa. This study aimed to evaluate the anti-non-small cell lung cancer (NSCLC) activities of WU against A549 cells and to reveal potential molecular mechanisms. The cytotoxicity of various WU extracts was evaluated with HeLa (cervical cancer), HepG2 (liver cancer), HT-29 (colorectal cancer), and A549 (non-small cell lung cancer) cells by means of Sulforhodamine B (SRB) assay. Therein, the dimethyl carbonate extract of WU (WUD) was tested with the most potent anti-proliferative activity against the four cancer cell lines, and its effects on cell viability, cell cycle progression, DNA damage, intracellular reactive oxygen species (ROS), and expression levels of G0/G1-related proteins in A549 cells were further examined. First, it was found that WUD inhibited the proliferation of A549 cells in a time- and dose-dependent manner. In addition, WUD induced G0/G1 phase arrest and modulated the expression of G0/G1 phase-associated proteins Cyclin D1, Cyclin E1, and P27 in A549 cells. Furthermore, WUD increased the protein abundance of P27 by inhibiting FOXO3A/SKP2 axis-mediated protein degradation and also significantly induced the γH2AX expression and intracellular ROS generation of A549 cells. It was also found that the inhibitory effect of WUD on the proliferation and G0/G1 cell cycle progression of A549 cells could be attenuated by NAC, a ROS scavenger. On the other hand, phytochemical analysis of WUD with UPLC-QTOF-MS/MS indicated 10 sesquiterpenoid compounds. In conclusion, WUD exhibited remarkable anti-proliferative effects on A549 cells by improving the intracellular ROS level and by subsequently modulating the cell proliferation and G0/G1 cell cycle progression of A549 cells. These findings proved the good therapeutic potential of WU for the treatment of NSCLC.


Sign in / Sign up

Export Citation Format

Share Document