Experimental sampling of the Z-axis error and laser positioning error of an EOSINT M280 DMLS machine

2018 ◽  
Vol 21 ◽  
pp. 501-516 ◽  
Author(s):  
Yang Lu ◽  
Rakshith Badarinath ◽  
E. Amine Lehtihet ◽  
Edward C. De Meter ◽  
Timothy W. Simpson
2020 ◽  
Vol 165 ◽  
pp. 03009
Author(s):  
Li Yan-yi ◽  
Huang Jin ◽  
Tang Ming-xiu

In order to evaluate the performance of GPS / BDS, RTKLIB, an open-source software of GNSS, is used in this paper. In this paper, the least square method, the weighted least square method and the extended Kalman filter method are respectively applied to BDS / GPS single system for data solution. Then, the BDS system and GPS system are used for fusion positioning and the positioning results of the two systems are compared with that of the single system. Through the comparison of experiments, on the premise of using the extended Kalman filter method for positioning, when the GPS signal is not good, BDS data is introduced for dual-mode positioning, the positioning error in e direction is reduced by 36.97%, the positioning error in U direction is reduced by 22.95%, and the spatial positioning error is reduced by 16.01%, which further reflects the advantages of dual-mode positioning in improving a system robustness and reducing the error.


2015 ◽  
Vol 809-810 ◽  
pp. 682-687
Author(s):  
Vasile Nasui ◽  
Mihai Banica ◽  
Dinu Darabă

This paper presents the dynamic characteristics and the proposed positioning performance of the system to them investigated experimentally. In this research, we developed the positioning system and we evaluated positioning accuracy. The developed system uses a servo motor for motion actuation. In this paper, we focused on studying the dependency of the positioning error – elementary errors – the position of the conducting element for the mechanism of the transformation of the rotation translation movement, representatively the mechanism screw – screwdriver and on emphasizing the practical consequences in the field of design, regulation and exploitation of the correct identification of all the initial errors in the structure of the mechanism, their character and the selection for an ultimate calculus of these which are of a real practical importance.


2021 ◽  
Vol 1920 (1) ◽  
pp. 012088
Author(s):  
Wenjiu Zhu ◽  
Jie Hou ◽  
Zhengqiong Liu ◽  
Zhizhong Ding

2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


2010 ◽  
Vol 6 (3) ◽  
pp. 281-290 ◽  
Author(s):  
Jack H. Noble ◽  
Omid Majdani ◽  
Robert F. Labadie ◽  
Benoit Dawant ◽  
J. Michael Fitzpatrick

2002 ◽  
Vol 68 (665) ◽  
pp. 308-314
Author(s):  
Katsumi YAMAGUCHI ◽  
Kazuo MURATA ◽  
Seiichirou KITAGAWA ◽  
Hiroshi OHWARI ◽  
Kousuke IMAMURA ◽  
...  

2021 ◽  
Author(s):  
Daiki Kato ◽  
Kenya Yoshitugu ◽  
Naoki Maeda ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Abstract Most industrial robots are taught using the teaching playback method; therefore, they are unsuitable for use in variable production systems. Although offline teaching methods have been developed, they have not been practiced because of the low accuracy of the position and posture of the end-effector. Therefore, many studies have attempted to calibrate the position and posture but have not reached a practical level, as such methods consider the joint angle when the robot is stationary rather than the features during robot motion. Currently, it is easy to obtain servo information under numerical control operations owing to the Internet of Things technologies. In this study, we propose a method for obtaining servo information during robot motion and converting it into images to find features using a convolutional neural network (CNN). Herein, a large industrial robot was used. The three-dimensional coordinates of the end-effector were obtained using a laser tracker. The positioning error of the robot was accurately learned by the CNN. We extracted the features of the points where the positioning error was extremely large. By extracting the features of the X-axis positioning error using the CNN, the joint 1 current is a feature. This indicates that the vibration current in joint 1 is a factor in the X-axis positioning error.


Sign in / Sign up

Export Citation Format

Share Document