scholarly journals Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel

2019 ◽  
Vol 25 ◽  
pp. 545-550 ◽  
Author(s):  
Filomeno Martina ◽  
Jialuo Ding ◽  
Stewart Williams ◽  
Armando Caballero ◽  
Gonçalo Pardal ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 461
Author(s):  
Seung Hwan Lee

Wire and arc additive manufacturing (WAAM) is among the most promising additive manufacturing techniques for metals because it yields high productivity at low raw material costs. However, additional post-processing is required to remove redundant surface material from components manufactured by the WAAM process, and thus the productivity decreases. To increase productivity, multi-variable process parameters need to be optimized, including thermo-mechanical effects caused by high deposition rates. When the process is modeled, deposit shape and productivity are challenging to quantify due to uncertainty in multiple variables of the complicated WAAM process. Therefore, we modeled the WAAM process parameters, including uncertainties, using a Gaussian process regression (GPR) method, thus allowing us to develop a WAAM optimization model to improve both productivity and the quality of the deposit shape. The accuracy of the optimized output was verified through a close agreement with experimental values. The optimized deposited material had a wide effective area ratio, small height differences, and near 90° deposition angle, highlighting the usefulness of the GPR model approach to deposit nearly ideal material shapes.


Author(s):  
Ashish Kumar ◽  
Kuntal Maji

This paper presents numerical and experimental investigations on wire arc additive manufacturing for deposition of 430L ferritic stainless steel. Finite element analysis was used to predict temperature distribution for deposition of multiple layers in wire arc additive manufacturing. The transient temperature distribution and predicted by finite element simulation was in good agreement with the experimental results. A wall type structure was fabricated by deposition of multiple layers vertically, and deposited material was characterized by tensile testing and microstructure study. The microstructure of the deposited wall structure was investigated through optical microscopy and scanning electron microscopy (SEM) with EDS. The microstructure of deposited material was changed from fine cellular grains structure to columnar dendrites structure with the formation of secondary arm. It was found that the YS, UTS, and EL of the deposition direction were better than the build direction. The mechanical properties of the WAAM manufactured material was found comparable to that of the wire metal.


2019 ◽  
Vol 26 (3) ◽  
pp. 519-530 ◽  
Author(s):  
Md. Rumman Ul Ahsan ◽  
Ali Newaz Mohammad Tanvir ◽  
Taylor Ross ◽  
Ahmed Elsawy ◽  
Min-Suk Oh ◽  
...  

Purpose Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple materials successively or simultaneously during the manufacturing of a single component. Design/methodology/approach In this work, a gas metal arc welding (GMAW) based wire + arc additive manufacturing (WAAM) system has been developed to use two material successively and fabricate bimetallic additively manufactured structure (BAMS) of low carbon steel and AISI 316L stainless steel (SS). Findings The interface shows two distinctive zones of LCS and SS deposits without any weld defects. The hardness profile shows a sudden increase of hardness at the interface, which is attributed to the migration of chromium from the SS. The tensile test results show that the bimetallic specimens failed at the LCS side, as LCS has lower strength of the materials used. Originality/value The microstructural features and mechanical properties are studied in-depth with special emphasis on the bimetallic interface.


Sign in / Sign up

Export Citation Format

Share Document