Fiber–matrix impregnation behavior during additive manufacturing of continuous carbon fiber reinforced polylactic acid composites

2020 ◽  
pp. 101661
Author(s):  
Fuji Wang ◽  
Gongshuo Wang ◽  
Fuda Ning ◽  
Zhongbiao Zhang
Author(s):  
Gongshuo Wang ◽  
Zhenyuan Jia ◽  
Fuji Wang ◽  
Chuanhe Dong ◽  
Bo Wu

Abstract Fused filament fabrication (FFF) is one of the most broadly used additive manufacturing technologies, which possesses the advantage of a reduction in fabrication time and cost for complex-structural parts. FFF-fabricated continuous carbon fiber reinforced thermoplastic (C-CFRTP) composites have seen their great potentials in the industry due to the extraordinary mechanical properties. However, the relationship among process parameters, impregnation percentage, and mechanical properties is still unknown, which has greatly hindered both the manufacturing and application of those advanced composite parts. For this reason, the influence of process parameters on the impregnation percentage and mechanical properties of C-CFRTP specimens has been investigated in this paper. The process-impregnation-properties relationship of FFF-fabricated C-CFRTP specimens has been revealed through theoretical analyses and experimental measurement. It could be concluded that the impregnation percentage served as the bridge connecting process parameters and mechanical properties, which would provide a great insight into the property improvement. The experimental results of microscopic measurement and mechanical tests indicated that the combination of low transverse movement speed, high nozzle temperature, and small layer thickness led to an improved impregnation percentage, which ultimately produced better mechanical properties. The findings in this work will guide the fabrication of C-CFRTP parts with excellent mechanical performance for practical engineering applications.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3850 ◽  
Author(s):  
Hao Dou ◽  
Yunyong Cheng ◽  
Wenguang Ye ◽  
Dinghua Zhang ◽  
Junjie Li ◽  
...  

Three-dimensional (3D) printing continuous carbon fiber-reinforced polylactic acid (PLA) composites offer excellent tensile mechanical properties. The present study aimed to research the effect of process parameters on the tensile mechanical properties of 3D printing composite specimens through a series of mechanical experiments. The main printing parameters, including layer height, extrusion width, printing temperature, and printing speed are changed to manufacture specimens based on the modified fused filament fabrication 3D printer, and the tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites are presented. By comparing the outcomes of experiments, the results show that relative fiber content has a significant impact on mechanical properties and the ratio of carbon fibers in composites is influenced by layer height and extrusion width. The tensile mechanical properties of continuous carbon fiber-reinforced composites gradually decrease with an increase of layer height and extrusion width. In addition, printing temperature and speed also affect the fiber matrix interface, i.e., tensile mechanical properties increase as the printing temperature rises, while the tensile mechanical properties decrease when the printing speed increases. Furthermore, the strengthening mechanism on the tensile mechanical properties is that external loads subjected to the components can be transferred to the carbon fibers through the fiber-matrix interface. Additionally, SEM images suggest that the main weakness of continuous carbon fiber-reinforced 3D printing composites exists in the fiber-matrix interface, and the main failure is the pull-out of the fiber caused by the interface destruction.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3618
Author(s):  
Yunhong Liang ◽  
Chang Liu ◽  
Qian Zhao ◽  
Zhaohua Lin ◽  
Zhiwu Han ◽  
...  

Inspired by eagle-owl feather with characteristics of light weight and high strength, the bionic continuous carbon fiber-reinforced polylactic acid composite with barbicel structure was successfully 3D printed. Under the action of external load, angles between barbicels and rachis structure of eagle-owl feather decreased, which consumed a part of energy and built structure base of bionic feather structure model with a certain arrangement angle of continuous carbon fiber. Variation of bionic structure model design parameters significantly affected the mechanical properties of the 3D printing bionic composites. The relatively low continuous carbon fiber content on tensile force direction restricted enhancement of tensile strength of bionic composite. However, attributed to different angle arrangement of continuous carbon fiber, the propagation of cracks in bionic composite was hindered, exhibiting high impact resistance. The effective and feasible bionic feather design and 3D printing of continuous carbon fiber-reinforced polylactic acid composite extended the corresponding application in the areas with high impact loads.


Sign in / Sign up

Export Citation Format

Share Document