scholarly journals Bionic Design and 3D Printing of Continuous Carbon Fiber-Reinforced Polylactic Acid Composite with Barbicel Structure of Eagle-Owl Feather

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3618
Author(s):  
Yunhong Liang ◽  
Chang Liu ◽  
Qian Zhao ◽  
Zhaohua Lin ◽  
Zhiwu Han ◽  
...  

Inspired by eagle-owl feather with characteristics of light weight and high strength, the bionic continuous carbon fiber-reinforced polylactic acid composite with barbicel structure was successfully 3D printed. Under the action of external load, angles between barbicels and rachis structure of eagle-owl feather decreased, which consumed a part of energy and built structure base of bionic feather structure model with a certain arrangement angle of continuous carbon fiber. Variation of bionic structure model design parameters significantly affected the mechanical properties of the 3D printing bionic composites. The relatively low continuous carbon fiber content on tensile force direction restricted enhancement of tensile strength of bionic composite. However, attributed to different angle arrangement of continuous carbon fiber, the propagation of cracks in bionic composite was hindered, exhibiting high impact resistance. The effective and feasible bionic feather design and 3D printing of continuous carbon fiber-reinforced polylactic acid composite extended the corresponding application in the areas with high impact loads.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 301
Author(s):  
Jiale Hu ◽  
Suhail Mubarak ◽  
Kunrong Li ◽  
Xu Huang ◽  
Weidong Huang ◽  
...  

Three-dimensional (3D) printing of continuous fiber-reinforced composites has been developed in recent decades as an alternative means to handle complex structures with excellent design flexibility and without mold forming. Although 3D printing has been increasingly used in the manufacturing industry, there is still room for the development of theories about how the process parameters affect microstructural properties to meet the mechanical requirements of the printed parts. In this paper, we investigated continuous carbon fiber-reinforced polyphenylene sulfide (CCF/PPS) as feedstock for fused deposition modeling (FDM) simulated by thermocompression. This study revealed that the samples manufactured using a layer-by-layer process have a high tensile strength up to 2041.29 MPa, which is improved by 68.8% compared with those prepared by the once-stacked method. Moreover, the mechanical–microstructure characterization relationships indicated that the compactness of the laminates is higher when the stacked CCF/PPS are separated, which can be explained based on both the void formation and the nanoindentation results. These reinforcements confirm the potential of remodeling the layer-up methods for the development of high-performance carbon fiber-reinforced thermoplastics. This study is of great significance to the improvement of the FDM process and opens broad prospects for the aerospace industry and continuous fiber-reinforced polymer matrix materials.


2021 ◽  
Author(s):  
Md Atikur Rahman ◽  
Md Zahirul Islam ◽  
Luke Gibbon ◽  
Chad A. Ulven ◽  
John J. La Scala

2020 ◽  
Vol 861 ◽  
pp. 165-169
Author(s):  
Tian Lan ◽  
Li Chao Dong ◽  
Zhong Yuan Lu ◽  
Shi Feng Guo ◽  
Hao Zhang ◽  
...  

3D printed carbon fiber reinforced composites (CFRP) have shown great potential in lightweight application. Here, we report a prepreg carbon fiber reinforced polyamide composite by fused filament fabrication 3D printing process. The influence of layer thickness and carbon fiber layers on mechanical properties of 3D printed parts was well studied. With the incorporation of prepreg carbon fibers, the value of tension and flexural strengths of 3D printed CFRP parts could achieve 2.7 and 13.6 times compared to neat polyamide, respectively. Result illustrates that with the prepreg process the carbon fiber have good interface bonding strength with neat polyimide. This work could also be used for more 3D printing composite systems.


Sign in / Sign up

Export Citation Format

Share Document