Effect of laser-plume interaction on part quality in multi-scanner Laser Powder Bed Fusion

2021 ◽  
Vol 38 ◽  
pp. 101810
Author(s):  
Christian Tenbrock ◽  
Tobias Kelliger ◽  
Niklas Praetzsch ◽  
Marcel Ronge ◽  
Lucas Jauer ◽  
...  
JOM ◽  
2020 ◽  
Vol 72 (3) ◽  
pp. 1039-1051
Author(s):  
Haopeng Shen ◽  
Paul Rometsch ◽  
Xinhua Wu ◽  
Aijun Huang

2020 ◽  
Vol 33 ◽  
pp. 101129 ◽  
Author(s):  
Charlotte de Formanoir ◽  
Umberto Paggi ◽  
Thomas Colebrants ◽  
Lore Thijs ◽  
Guichuan Li ◽  
...  

Procedia CIRP ◽  
2020 ◽  
Vol 94 ◽  
pp. 167-172
Author(s):  
Max Horn ◽  
Lukas Langer ◽  
Mario Schafnitzel ◽  
Simone Dietrich ◽  
Georg Schlick ◽  
...  

Author(s):  
Simon Schmid ◽  
Johannes Krabusch ◽  
Thomas Schromm ◽  
Shi Jieqing ◽  
Stefan Ziegelmeier ◽  
...  

AbstractAdditive manufacturing (AM) offers unique possibilities in comparison to conventional manufacturing processes. For example, complex parts can be manufactured without tools. For metals, the most commonly used AM process is laser-powder bed fusion (L-PBF). The L-PBF process is prone to process disturbances, hence maintaining a consistent part quality remains an important subject within current research. An established indicator for quantifying process changes is the dimension of melt pools, which depends on the energy input and the cooling conditions. The melt pool geometry is normally measured manually in cross sections of solidified welding seams. This paper introduces a new approach for the automated visual measuring of melt pools in cross-sections of parts manufactured by L-PBF. The melt pools are first segmented in the images and are then measured. Since the melt pools have a heterogeneous appearance, segmentation with common digital image processing is difficult, deep learning was applied in this project. With the presented approach, the melt pools can be measured over the whole cross section of the specimen. Furthermore, remelted melt pools, which are only partly visible, are evaluated. With this automated approach, a high number of melt pools in each cross-section can be measured, which allows the examination of trends over the build direction in a specimen and results in better statistics. Furthermore, deviations in the energy input can be estimated via the measured melt pool dimensions.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document