scholarly journals Defining a novel pore-body to pore-throat “Morphological Aspect Ratio” that scales with residual non-wetting phase capillary trapping in porous media

2018 ◽  
Vol 122 ◽  
pp. 251-262 ◽  
Author(s):  
Linnéa Andersson ◽  
Anna Herring ◽  
Steffen Schlüter ◽  
Dorthe Wildenschild
1999 ◽  
Vol 2 (02) ◽  
pp. 161-168 ◽  
Author(s):  
Z.R. Liang ◽  
P.C. Philippi ◽  
C.P. Fernandes ◽  
F.S. Magnani

Summary The main purpose of the present work is to predict the permeability of a porous medium from its three-dimensional (3D) porous structure network. In this work, 3D porous structure is reconstructed by the truncated Gaussian method using Fourier transform and starting from a 2D binary image obtained from a thin section of a porous sample. The skeleton of the 3D porous structure provides a way of visualizing the graph of the pore network. It is determined using a thinning algorithm, which is conceived to preserve topology. It gives both visual and quantitative information about the connectivity of the pore space, the coordination number for every node and local hydraulic radius. Once the network of the pore structure is obtained, the macroscopic transport properties, such as the permeability, can be predicted. The method is applied to a 500 mD Berea sandstone and the predicted permeability is in good agreement with the experimental value and empirical correlations. Introduction The prediction of equilibrium and transport properties of porous media is a long-standing problem of great theoretical and practical interest, particularly in petroleum reservoir engineering.1 Past theoretical attempts to derive macroscopic transport coefficients from the microstructure of porous media entailed a simplified representation of the pore space, often as a bundle of capillary tubes.1–3 These models have been widely applied because of their convenience and familiarity to the engineers. But they do have some limitations. For example, they are not well suited for describing the effect of the pore space interconnectivity and long range correlation in the system. Network models have been advanced to describe phenomena at the microscopic level and have been extended in the last few years to describe various phenomena at the macroscopic level. These models are mostly based on a network representation of the porous media in which larger pores (pore bodies) are connected by narrower pores (pore throats). Network models represent the most important and widely used class of geometric models for porous media.2 A network is a graph consisting of a set of nodes or sites connected by a set of links or bonds. The nodes can be chosen deterministically or randomly as in the realization of a Poisson or other stochastic point process. Similarly the links connecting different nodes may be chosen according to some deterministic or random procedure. Finally, the nodes are dressed with convex sets such as spheres representing pore bodies, and the bonds are dressed with tubes providing a connecting path between the pore bodies. The original idea of representing a porous structure by a network is rather old, but it was only in the early 1980s that systematic and rigorous procedures were developed to map, in principle, any disordered rock onto an equivalent random network of bonds and sites. Once this mapping is complete one can study a given phenomenon in porous media in great detail.3 Dullien1 reviewed the details of various pore-scale processes, including detailed descriptions of many aspects of network models. The most important features of pore network geometry and topology that affect fluid distribution and flow in reservoir rocks are the pore throat and pore body size distributions, the pore body-to-pore throat size aspect ratio and the pore body coordination number.4 These data have been tentatively assumed in the previous works. The extension of these techniques to real porous media has been complicated by the difficulty in describing the complex three-dimensional (3D) pore structure of real porous rocks. Information about the pore structure of reservoir rocks is often obtained from mercury intrusion and sorption isotherm. Mercury intrusion and sorption isotherm data provide statistical information about the pore throat size distribution, or, more correctly, the distribution of the volumes that may be invaded within specified pore throat sizes. Advanced techniques such as microcomputed tomography5 and serial sectioning6,7 do provide a detailed description of the 3D pore structures of rocks. Recently, image analysis methods used over pictures of highly polished surfaces of porous materials (e.g., Refs. 8-10), taken with an electron scanning microscope have been used to describe the porous structure. Image analysis techniques such as opening (2D and 3D)11,13 and median line graphs (2D)13 were developed. Information on porous structure is obtained from the analysis of 2D binary images. For isotropic media, a 3D microstructure may be reconstructed from any statistically homogeneous 2D section. The general objective of a reconstructed porous structure is to mimic more closely the geometry of real media. This method has been previously applied to the prediction of important petrophysical and reservoir engineering properties, such as permeability8 and formation factor14 with reasonable success. Thovert et al.15 used the reconstructed porous structure and developed thinning algorithms to obtain the graph of the 3D pore structure. Some topological characteristics such as the number of loops were derived. Bakke and O/ren16 generated 3D pore networks based on numerical modeling of the main sandstone forming geological processes. Absolute and relative permeability were computed for a Bentheimer sandstone. However, although their algorithms worked well on their models, the problem of connectivity preservation for a 3D thinning algorithm appears to be only correctly taken into account by Ma,17 who proposed sufficient conditions for providing a 3D thinning algorithm to preserve connectivity.


2002 ◽  
Vol 11 (4) ◽  
pp. 358-365 ◽  
Author(s):  
Tian Ju-Ping ◽  
Yao Kai-Lun

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1291 ◽  
Author(s):  
Xiaoxi Yu ◽  
Yuan Li ◽  
Yuquan Liu ◽  
Yuping Yang ◽  
Yining Wu

Viscoelastic surfactant (VES) fluid and hydrolyzed polyacryamide (HPAM) solution are two of the most common fracturing fluids used in the hydraulic fracturing development of unconventional reservoirs. The filtration of fracturing fluids in porous media is mainly determined by the flow patterns in pore-throat structures. In this paper, three different microdevices analogue of porous media allow access to a large range of Deborah number (De) and concomitantly low Reynolds number (Re). Continuous pore-throat structures were applied to study the feedback effect of downstream structure on upstream flow of VES fluid and HPAM solution with Deborah (De) number from 1.11 to 146.4. In the infinite straight channel, flow patterns between VES fluids and HPAM solution were similar. However, as pore length shortened to 800 μm, flow field of VES fluid exhibited the triangle shape with double-peaks velocity patterns. The flow field of HPAM solution presented stable and centralized streamlines when Re was larger than 4.29 × 10−2. Additionally, when the pore length was further shortened to 400 μm, double-peaks velocity patterns were vanished for VES fluid and the stable convergent flow characteristic of HPAM solution was observed with all flow rates.


2017 ◽  
Vol 44 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Yazhou ZHOU ◽  
Demin WANG ◽  
Zhipeng WANG ◽  
Rui CAO
Keyword(s):  

2019 ◽  
Vol 46 (23) ◽  
pp. 13804-13813
Author(s):  
Ke Xu ◽  
Yashar Mehmani ◽  
Luoran Shang ◽  
Qingrong Xiong

2017 ◽  
Vol 5 (1) ◽  
pp. SB57-SB67 ◽  
Author(s):  
Nattavadee Srisutthiyakorn ◽  
Gerald M. Mavko

Hydraulic tortuosity is an important parameter in characterizing fluid-flow heterogeneity in porous media. The most basic definition of tortuosity is the ratio of the average flow path length to the sample length. Although this definition seems straightforward, the lack of understanding and the lack of proper ways to measure tortuosity make it one of the most abused parameters in rock physics. Hydraulic tortuosity is often treated merely as a fitting factor, or worse, it is neglected by being combined with a geometric factor in the Kozeny-Carman (KC) equation. Often, the tortuosity is obtained from laboratory measurements of porosity, permeability, and specific surface area by inverting the KC equation. This approach has a major pitfall because it treats tortuosity as a fitting factor, and the inverted tortuosity is often unphysically high. In contrast, we obtained the tortuosity from 3D segmented binary images of porous media using streamlines extracted from a local flux, the output from the lattice Boltzmann method (LBM) flow simulation. After obtaining streamlines from each sample, we calculated the distribution of tortuosities and flux-weighted average tortuosity. With the tortuosity measurement from streamlines, every parameter in the KC equation can be measured accurately from 3D segmented binary images. We found, however, that the KC equation is still missing some important geometric information needed to predict permeability. With known parameters and without a fitting factor, the KC equation predicts permeability higher by one to two orders of magnitude than that predicted by the LBM. We searched for a missing parameter by exploring various concepts such as connected pore space and pore throat distribution. We found that the connected pore space does not contribute to the difference between the KC permeability and LBM permeability, whereas, as we learn with sinusoidal pipe examples, the pore throat distribution captures what is missing from the KC equation.


Sign in / Sign up

Export Citation Format

Share Document