A physics-based model to predict the impact of horizontal lamination on CO2 plume migration

2021 ◽  
pp. 103881
Author(s):  
Maartje Boon ◽  
Sally M. Benson
Keyword(s):  
2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Zoann Low ◽  
...  

Abstract CO2 sequestration is a process for eternity with a possibility of zero-degree failure. Monitoring, Measurement and Verification (MMV) planning of CO2 sequestration is crucial along with geological site selection, transportation and injection process. Several geological formations have been evaluated in the past for potential storage site which divulges the containment capacity of identified large, depleted gas reservoirs as well as long term conformance. Offshore environment makes MMV plan challenging and demands rigorous integration of monitoring technologies to optimize project economic and involved logistics. The role of MMV is critical for sustainability of the CO2 storage project as it ensures that injected CO2 in the reservoir is intact and safely stored for hundreds of years post-injection. Field specific MMV technologies for CO2 plume migration with proactive approach were identified after exercising pre-defined screening criteria. Marine CO2 dispersion study is carried out to confirm the impact of any potential leakage along existing wells and faults, and to understand the CO2 behavior in marine environment in the event of leakage. Study incorporates integration of G&G subsurface and Meta-Ocean & Environment data along with other leakage character information. Multi-Fiber Optic Sensors System (M-FOSS) to be installed in injector wells for monitoring well & reservoir integrity, overburden integrity and monitoring of early CO2 plume migration by acquiring & analyzing the distributed sensing data (DTS/DPS/DAS/DSS). Based on 3D couple modeling, a maximum injection rate of approximately 200 MMscfd of permeate stream produced from a high CO2 contaminated gas field can be achieved. Injectivity studies indicate that over 100 MMSCFD of CO2 injection rates into depleted gas reservoir is possible from a single injector. Injectivity results are integrated with dynamic simulation to determine number and location of injector wells. 3D DAS-VSP simulation results show that a subsurface coverage of approximately 3 km2 per well is achievable, which along with simulated CO2 plume extent help to determine the number of wells required to get maximum monitoring coverage for the MMV planning. As planned injector wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume. To overcome this challenge, requirement of surface seismic acquisition survey is recommended for full field monitoring. An integrated MMV plan is designed for cost-effective long-term offshore monitoring of CO2 plume migration. The present study discusses the impacting parameters which make the whole process environmentally sustainable, economically viable and adhering to national and international regulations.


2017 ◽  
Vol 57 (1) ◽  
pp. 100 ◽  
Author(s):  
Emad A. Al-Khdheeawi ◽  
Stephanie Vialle ◽  
Ahmed Barifcani ◽  
Mohammad Sarmadivaleh ◽  
Stefan Iglauer

CO2 migration and storage capacity are highly affected by various parameters (e.g. reservoir temperature, vertical to horizontal permeability ratio, cap rock properties, aquifer depth and the reservoir heterogeneity). One of these parameters, which has received little attention, is brine salinity. Although brine salinity has been well demonstrated previously as a factor affecting rock wettability (i.e. higher brine salinity leads to more CO2-wet rocks), its effect on the CO2 storage process has not been addressed effectively. Thus, we developed a three-dimensional homogeneous reservoir model to simulate the behaviour of a CO2 plume in a deep saline aquifer using five different salinities (ranging from 2000 to 200 000 ppm) and have predicted associated CO2 migration patterns and trapping capacities. CO2 was injected at a depth of 1408 m for a period of 1 year at a rate of 1 Mt year–1 and then stored for the next 100 years. The results clearly indicate that 100 years after the injection of CO2 has stopped, the salinity has a significant effect on the CO2 migration distance and the amount of mobile, residual and dissolved CO2. First, the results show that higher brine salinity leads to an increase in CO2 mobility and CO2 migration distance, but reduces the amount of residually trapped CO2. Furthermore, high brine salinity leads to reduced dissolution trapping. Thus, we conclude that less-saline aquifers are preferable CO2 sinks.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Zoann Low ◽  
Parimal Arjun Patil ◽  
Debasis Priyadarshan Das ◽  
Prasanna Chidambaram ◽  
...  

Abstract Monitoring of CO2 plume migration in a depleted carbonate reservoir is challenging and demand comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic exhibits the migration of CO2 plume within geological storage but in the area affected by gas chimney due to poor signal-to-noise ratio (SNR), uncertainty in identifying and interpretation of CO2 plume gets exaggerated. High resolution 3D vertical seismic profile (VSP) survey using distributed acoustic sensor (DAS) technology fulfil the objective of obtaining the detailed subsurface image which include CO2 plume migration, reservoir architecture, sub-seismic faults and fracture networks as well as the caprock. Integration of quantitative geophysics and dynamic simulation with illumination modelling dignify the capabilities of 3D DAS-VSP for CO2 plume migration monitoring. The storage site has been studied in detailed and an integrated coupled dynamic simulation were performed and results were integrated with seismic forward modeling to demonstrate the CO2 plume migration with in reservoir and its impact on seismic amplitude. 3D VSP illumination modelling was carried out by integrating reservoir and overburden interpretations, acoustic logs and seismic velocity to illustrate the subsurface coverage area at top of reservoir. Several acquisition survey geometries were simulated based on different source carpet size for effective surface source contribution for subsurface illumination and results were analyzed to design the 3D VSP survey for early CO2 plume migration monitoring. The illumination simulation was integrated with dynamic simulation for fullfield CO2 plume migration monitoring with 3D DAS-VSP by incorporating Pseudo wells illumination analysis. Results of integrated coupled dynamic simulation and 4D seismic feasibility were analyzed for selection of best well location to deploy the multi fiber optic sensor system (M-FOSS) technology. Amplitude response of synthetic AVO (amplitude vs offsets) gathers at the top of carbonate reservoir were analyzed for near, mid and far angle stacks with respect to pre-production as well as pre-injection reservoir conditions. Observed promising results of distinguishable 25-30% of CO2 saturation in depleted reservoir from 4D time-lapse seismic envisage the application of 3D DAS-VSP acquisition. The source patch analysis of 3D VSP illumination modelling results indicate that a source carpet of 6km×6km would be cos-effectively sufficient to produce a maximum of approximately 2km in diameter subsurface illumination at the top of the reservoir. The Pseudo wells illumination analysis results show that current planned injection wells would probably able to monitor early CO2 injection but for the fullfield monitoring additional monitoring wells or a hybrid survey of VSP and surface seismic would be required. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from 3D DAS-VSP will reduce the associated risks.


2011 ◽  
Vol 4 ◽  
pp. 3801-3808 ◽  
Author(s):  
Halvor Møll Nilsen ◽  
Paulo A. Herrera ◽  
Meisam Ashraf ◽  
Ingeborg Ligaarden ◽  
Martin Iding ◽  
...  

2021 ◽  
Author(s):  
Nele Wenck ◽  
Ann Muggeridge ◽  
Julian Barnett ◽  
Samuel Krevor

<p>Characterisation of multiphase flow properties is crucial in predicting large-scale fluid behaviour in the subsurface, for example carbon dixoide (CO<sub>2</sub>) plume migration at Carbon Capture and Storage (CCS) storage sites. Many of the CO<sub>2</sub> storage sites worldwide have displayed unexpected fluid flow behaviour. The CO<sub>2</sub> injected underground has migrated in reservoirs away from injection points at much faster rates than had previously been predicted with reservoir simulations [1]. It has emerged that conventional flow simulations are not representing the impact of small-scale heterogeneities in multiphase flow properties, which is a key driver behind these unexpected CO<sub>2</sub> migration observations [2]. Heterogeneity in the underlying rock structure can cause large variations in porosity and permeability, which manifest as capillary pressure heterogeneity [3-4]. At the low flow potentials typically encountered during CO<sub>2</sub> injection, these heterogeneities can significantly impact fluid flow behaviour, typically observed as large saturation variations within the rock [5-6]. In this work, we have combined experimental and numerical methods to characterise the impact of capillary heterogeneities on plume migration at the Endurance proposed storage site to support the Northern Endurance Partnership (NEP) serving the Zero Carbon Humber and Net Zero Teesside projects in the UK. We built on an approach to characterising capillary heterogeneity at the core scale originating in the work of Krause et al. (2011). The workflow combines core flood experimental data with numerical simulations in a history match, with the experimental 3D saturation distribution as a matching target and the capillary pressure characteristics as a fitting parameter [6]. Through this a 3D digital model of the rock core is built, which incorporates spatial variations in permeability, porosity and capillary heterogeneity. We applied this characterisation effort to reservoir samples from a range of depths within the target interval. Subsequently, these digital core models were used in an upscaling procedure to characterise the impact of small-scale heterogeneities on field scale simulations. The workflow has enabled us to make informed predictions on the observed fluid behaviour at the Endurance storage site. The results emphasize the prevalent impact of small-scale capillary heterogeneities on CO<sub>2</sub> plume migration, thus underscore the importance of characterising and incorporating them in reservoir models.</p><p>1. Global CCS Institute (2019), Global Status of CCS: 2019.<br>2. Jackson, S. J. and Krevor, S. (2020), ‘Small-Scale Capillary Heterogeneity Linked to Rapid Plume Migration During CO2 Storage’, Geophysical Research Letters 47(18).<br>3. Pini, R., Krevor, S.C. and Benson, S.M., 2012. Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Advances in Water Resources, 38, pp.48-59.<br>4. Reynolds, C.A., Blunt, M.J. and Krevor, S., 2018. Multiphase flow characteristics of heterogeneous rocks from CO 2 storage reservoirs in the United Kingdom. Water Resources Research, 54(2), pp.729-745.<br>5. Krause, M.H., Perrin, J.C. and Benson, S.M., 2011. Modeling permeability distributions in a sandstone core for history matching coreflood experiments. SPE Journal, 16(04), pp.768-777.<br>6. Jackson, S. J., Agada, S., Reynolds, C. A. and Krevor, S. (2018), ‘Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones’, Water Resources Research 54(4), 3139–3161.</p>


2010 ◽  
Vol 662 ◽  
pp. 329-351 ◽  
Author(s):  
C. W. MACMINN ◽  
M. L. SZULCZEWSKI ◽  
R. JUANES

Injection of carbon dioxide (CO2) into geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. To evaluate injection scenarios, estimate reservoir capacity and assess leakage risks, an accurate understanding of the subsurface spreading and migration of the plume of mobile CO2 is essential. Here, we present a complete solution to a theoretical model for the subsurface migration of a plume of CO2 due to natural groundwater flow and aquifer slope, and subject to residual trapping. The results show that the interplay of these effects leads to non-trivial behaviour in terms of trapping efficiency. The analytical nature of the solution offers insight into the physics of CO2 migration, and allows for rapid, basin-specific capacity estimation. We use the solution to explore the parameter space via the storage efficiency, a macroscopic measure of plume migration. In a future study, we shall incorporate CO2 dissolution into the migration model and study the importance of dissolution relative to capillary trapping and the impact of dissolution on the storage efficiency.


Sign in / Sign up

Export Citation Format

Share Document