Improvement of transportation cost estimation for prefabricated construction using geo-fence-based large-scale GPS data feature extraction and support vector regression

2020 ◽  
Vol 43 ◽  
pp. 101012 ◽  
Author(s):  
SangJun Ahn ◽  
SangUk Han ◽  
Mohamed Al-Hussein
2021 ◽  
Vol 11 (4) ◽  
pp. 1381
Author(s):  
Xiuzhen Li ◽  
Shengwei Li

Forecasting the development of large-scale landslides is a contentious and complicated issue. In this study, we put forward the use of multi-factor support vector regression machines (SVRMs) for predicting the displacement rate of a large-scale landslide. The relative relationships between the main monitoring factors were analyzed based on the long-term monitoring data of the landslide and the grey correlation analysis theory. We found that the average correlation between landslide displacement and rainfall is 0.894, and the correlation between landslide displacement and reservoir water level is 0.338. Finally, based on an in-depth analysis of the basic characteristics, influencing factors, and development of landslides, three main factors (i.e., the displacement rate, reservoir water level, and rainfall) were selected to build single-factor, two-factor, and three-factor SVRM models. The key parameters of the models were determined using a grid-search method, and the models showed high accuracies. Moreover, the accuracy of the two-factor SVRM model (displacement rate and rainfall) is the highest with the smallest standard error (RMSE) of 0.00614; it is followed by the three-factor and single-factor SVRM models, the latter of which has the lowest prediction accuracy, with the largest RMSE of 0.01644.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3396 ◽  
Author(s):  
Mingzhu Tang ◽  
Wei Chen ◽  
Qi Zhao ◽  
Huawei Wu ◽  
Wen Long ◽  
...  

Fault diagnosis and forecasting contribute significantly to the reduction of operating and maintenance associated costs, as well as to improve the resilience of wind turbine systems. Different from the existing fault diagnosis approaches using monitored vibration and acoustic data from the auxiliary equipment, this research presents a novel fault diagnosis and forecasting approach underpinned by a support vector regression model using data obtained by the supervisory control and data acquisition system (SCADA) of wind turbines (WT). To operate, the extraction of fault diagnosis features is conducted by measuring SCADA parameters. After that, confidence intervals are set up to guide the fault diagnosis implemented by the support vector regression (SVR) model. With the employment of confidence intervals as the performance indicators, an SVR-based fault detecting approach is then developed. Based on the WT SCADA data and the SVR model, a fault diagnosis strategy for large-scale doubly-fed wind turbine systems is investigated. A case study including a one-year monitoring SCADA data collected from a wind farm in Southern China is employed to validate the proposed methodology and demonstrate how it works. Results indicate that the proposed strategy can support the troubleshooting of wind turbine systems with high precision and effective response.


2011 ◽  
Vol 128-129 ◽  
pp. 297-300
Author(s):  
Shao Wei Liu ◽  
Dong Yan ◽  
Zhi Hua Liu ◽  
Jian Tang

Spectral data such as near-infrared spectrum and frequency spectrum can simply the modeling of the difficulty-to-measured parameters. A novel modeling approach combined the feature extraction with extreme support vector regression (ESVR) is proposed. The latent variables space based feature extraction method can successfully complete the dimension reduction and independent variable extraction. The novel proposed ESVR leaning algorithm is realized by using extreme learning machine (ELM) kernel as SVR kernel, which is used to construct final models with better generalization. The experimental results based on the orange juice near-infrared spectra demonstrate that the proposed approach has better generalization performance and prediction accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Bin Li ◽  
Yuqing He

The synergy of computational logistics and deep learning provides a new methodology and solution to the operational decisions of container terminal handling systems (CTHS) at the strategic, tactical, and executive levels. Above all, the container terminal logistics tactical operational complexity is discussed by computational logistics, and the liner handling volume (LHV) has important influences on a series of terminal scheduling decision problems. Subsequently, a feature-extraction-based lightweight convolutional and recurrent neural network adaptive computing model (FEB-LCR-ACM) is presented initially to predict the LHV by the fusion of multiple deep learning algorithms and mechanisms, especially for the specific feature extraction package of tsfresh. Consequently, the container-terminal-oriented logistics service scheduling decision support design paradigm is put forward tentatively by FEB-LCR-ACM. Finally, a typical large-scale container terminal of China is chosen to implement, execute, and evaluate the FEB-LCR-ACM based on the terminal running log around the indicator of LHV. In the case of severe vibration of LHV between 2 twenty-foot equivalent units (TEUs) and 4215 TEUs, while forecasting the LHV of 300 liners by the log of five years, the forecasting error within 100 TEUs almost accounts for 80%. When predicting the operation of 350 ships by the log of six years, the forecasting deviation within 100 TEUs reaches up to nearly 90%. The abovementioned two deep learning experimental performances with FEB-LCR-ACM are so far ahead of the forecasting results by the classical machine learning algorithm that is similar to Gaussian support vector machine. Consequently, the FEB-LCR-ACM achieves sufficiently good performance for the LHV prediction with a lightweight deep learning architecture based on the typical small datasets, and then it is supposed to overcome the operational nonlinearity, dynamics, coupling, and complexity of CTHS partially.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3876 ◽  
Author(s):  
Tiantian Zhu ◽  
Zhengqiu Weng ◽  
Guolang Chen ◽  
Lei Fu

With the popularity of smartphones and the development of hardware, mobile devices are widely used by people. To ensure availability and security, how to protect private data in mobile devices without disturbing users has become a key issue. Mobile user authentication methods based on motion sensors have been proposed by many works, but the existing methods have a series of problems such as poor de-noising ability, insufficient availability, and low coverage of feature extraction. Based on the shortcomings of existing methods, this paper proposes a hybrid deep learning system for complex real-world mobile authentication. The system includes: (1) a variational mode decomposition (VMD) based de-noising method to enhance the singular value of sensors, such as discontinuities and mutations, and increase the extraction range of the feature; (2) semi-supervised collaborative training (Tri-Training) methods to effectively deal with mislabeling problems in complex real-world situations; and (3) a combined convolutional neural network (CNN) and support vector machine (SVM) model for effective hybrid feature extraction and training. The training results under large-scale, real-world data show that the proposed system can achieve 95.01% authentication accuracy, and the effect is better than the existing frontier methods.


Author(s):  
Jieh-Haur Chen ◽  
Yu-Min Su ◽  
Diana Wahyu Hayati ◽  
Indradi Wijatmiko ◽  
Ragil Purnamasari

Author(s):  
Zhao Lu ◽  
Gangbing Song ◽  
Leang-san Shieh

As a general framework to represent data, the kernel method can be used if the interactions between elements of the domain occur only through inner product. As a major stride towards the nonlinear feature extraction and dimension reduction, two important kernel-based feature extraction algorithms, kernel principal component analysis and kernel Fisher discriminant, have been proposed. They are both used to create a projection of multivariate data onto a space of lower dimensionality, while attempting to preserve as much of the structural nature of the data as possible. However, both methods suffer from the complete loss of sparsity and redundancy in the nonlinear feature representation. In an attempt to mitigate these drawbacks, this article focuses on the application of the newly developed polynomial kernel higher order neural networks in improving the sparsity and thereby obtaining a succinct representation for kernel-based nonlinear feature extraction algorithms. Particularly, the learning algorithm is based on linear programming support vector regression, which outperforms the conventional quadratic programming support vector regression in model sparsity and computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document