AGU Fall Meeting session on Aeolian Dust: Transport Processes, Anthropogenic Forces, and Biogeochemical Cycling

2011 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
John-Andrew C. Ballantine ◽  
James King
2002 ◽  
Vol 107 (E12) ◽  
pp. 6-1-6-18 ◽  
Author(s):  
Claire E. Newman ◽  
Stephen R. Lewis ◽  
Peter L. Read ◽  
François Forget

2010 ◽  
Vol 10 (5) ◽  
pp. 13287-13335 ◽  
Author(s):  
S. Gassó ◽  
A. Stein ◽  
F. Marino ◽  
E. Castellano ◽  
R. Udisti ◽  
...  

Abstract. The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (~54° S) and from the shores of the Colihue Huapi lake in Central Patagonia (~46° S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6–7 and 9–10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and $\\sim $800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at ~1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.


2010 ◽  
Vol 10 (17) ◽  
pp. 8287-8303 ◽  
Author(s):  
S. Gassó ◽  
A. Stein ◽  
F. Marino ◽  
E. Castellano ◽  
R. Udisti ◽  
...  

Abstract. The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (~54° S) and from the shores of the Colihue Huapi lake in Central Patagonia (~46° S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6–7 and 9–10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and ~800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at ~1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.


Geomorphology ◽  
1996 ◽  
Vol 15 (2) ◽  
pp. 135-146 ◽  
Author(s):  
Hamish A. McGowan ◽  
Andrew P. Sturman ◽  
Ian F. Owens

2021 ◽  
Vol 14 (5) ◽  
pp. 2289-2316
Author(s):  
Yumeng Chen ◽  
Konrad Simon ◽  
Jörn Behrens

Abstract. The model error in climate models depends on mesh resolution, among other factors. While global refinement of the computational mesh is often not feasible computationally, adaptive mesh refinement (AMR) can be an option for spatially localized features. Creating a climate model with AMR has been prohibitive so far. We use AMR in one single-model component, namely the tracer transport scheme. Particularly, we integrate AMR into the tracer transport module of the atmospheric model ECHAM6 and test our implementation in several idealized scenarios and in a realistic application scenario (dust transport). To achieve this goal, we modify the flux-form semi-Lagrangian (FFSL) transport scheme in ECHAM6 such that we can use it on adaptive meshes while retaining all important properties (such as mass conservation) of the original FFSL implementation. Our proposed AMR scheme is dimensionally split and ensures that high-resolution information is always propagated on (locally) highly resolved meshes. We utilize a data structure that can accommodate an adaptive Gaussian grid. We demonstrate that our AMR scheme improves both accuracy and efficiency compared to the original FFSL scheme. More importantly, our approach improves the representation of transport processes in ECHAM6 for coarse-resolution simulations. Hence, this paper suggests that we can overcome the overhead of developing a fully adaptive Earth system model by integrating AMR into single components while leaving data structures of the dynamical core untouched. This enables studies to retain well-tested and complex legacy code of existing models while still improving the accuracy of specific components without sacrificing efficiency.


2018 ◽  
Vol 611 ◽  
pp. A80 ◽  
Author(s):  
Arthur D. Bosman ◽  
Alexander G. G. M. Tielens ◽  
Ewine F. van Dishoeck

Context. Radial transport of icy solid material from the cold outer disk to the warm inner disk is thought to be important for planet formation. However, the efficiency at which this happens is currently unconstrained. Efficient radial transport of icy dust grains could significantly alter the composition of the gas in the inner disk, enhancing the gas-phase abundances of the major ice constituents such as H2O and CO2.Aim. Our aim is to model the gaseous CO2 abundance in the inner disk and use this to probe the efficiency of icy dust transport in a viscous disk. From the model predictions, infrared CO2 spectra are simulated and features that could be tracers of icy CO2, and thus dust, radial transport efficiency are investigated.Methods. We have developed a 1D viscous disk model that includes gas accretion and gas diffusion as well as a description for grain growth and grain transport. Sublimation and freeze-out of CO2 and H2O has been included as well as a parametrisation of the CO2 chemistry. The thermo-chemical code DALI was used to model the mid-infrared spectrum of CO2, as can be observed with JWST-MIRI.Results. CO2 ice sublimating at the iceline increases the gaseous CO2 abundance to levels equal to the CO2 ice abundance of ~10−5, which is three orders of magnitude more than the gaseous CO2 abundances of ~10−8 observed by Spitzer. Grain growth and radial drift increase the rate at which CO2 is transported over the iceline and thus the gaseous CO2 abundance, further exacerbating the problem. In the case without radial drift, a CO2 destruction rate of at least 10−11 s−1 or a destruction timescale of at most 1000 yr is needed to reconcile model prediction with observations. This rate is at least two orders of magnitude higher than the fastest destruction rate included in chemical databases. A range of potential physical mechanisms to explain the low observed CO2 abundances are discussed.Conclusions. We conclude that transport processes in disks can have profound effects on the abundances of species in the inner disk such as CO2. The discrepancy between our model and observations either suggests frequent shocks in the inner 10 AU that destroy CO2, or that the abundant midplane CO2 is hidden from our view by an optically thick column of low abundance CO2 due to strong UV and/or X-rays in the surface layers. Modelling and observations of other molecules, such as CH4 or NH3, can give further handles on the rate of mass transport.


2008 ◽  
Vol 59 (11) ◽  
pp. 951 ◽  
Author(s):  
Emily C. Shaw ◽  
Albert J. Gabric ◽  
Grant H. McTainsh

Aeolian dust deposition has been shown to stimulate phytoplankton growth in various oligotrophic oceanic regions of the northern hemisphere. The present study investigated the relationship between the change in phytoplankton biomass in Queensland coastal waters and aeolian dust deposition during the severe October 2002 dust storm, using satellite-derived chlorophyll concentrations. A response in phytoplankton standing stock immediately following dust deposition from this event was found in the area of maximal dust deposition, as defined by a previous dust transport modelling analysis. Standing stock levels increased to 1.5–2 times the long-term mean. This is the first documented episode of a dust fertilisation event in Australian coastal waters and, given the high frequency of dust storms in northern Australia, demonstrates that aeolian delivery of nutrients may be an important factor in future regional nutrient budget analyses.


Sign in / Sign up

Export Citation Format

Share Document