Current mode first order universal filter and multiphase sinusoidal oscillator

Author(s):  
Ashok Kumar ◽  
Sajal K. Paul
2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


2019 ◽  
Vol 28 (13) ◽  
pp. 1950219 ◽  
Author(s):  
D. Agrawal ◽  
S. Maheshwari

This paper presents an electronically tunable current-mode first-order universal filter. The proposed circuit employs only a single Extra-X Current-Controlled Conveyor (EX-CCCII) and a single grounded capacitor, which is suitable for IC implementation. The circuit can realize three current transfer functions simultaneously, namely low-pass, high-pass and all-pass. The proposed circuit exhibits low-input and high-output impedance, which is suitable for cascading. The pole frequency of the filter can be electronically tuned, by varying the bias current of EX-CCCII. The nonidealities and parasitic effects on the circuit performance are investigated in detail. Also, the Monte Carlo analysis is done to show the effect of active and passive element mismatches on the pole frequency. An eight-phase current-mode sinusoidal oscillator and current-mode second-order filter are further realized using the proposed circuit. The functionality of the proposed circuits is verified through PSPICE simulations, using 0.25-[Formula: see text]m TSMC CMOS technology parameters.


Radio Science ◽  
2020 ◽  
Vol 55 (1) ◽  
Author(s):  
B. Chaturvedi ◽  
J. Mohan ◽  
Jitender ◽  
A. Kumar

2016 ◽  
Vol 25 (05) ◽  
pp. 1650042 ◽  
Author(s):  
Erkan Yuce ◽  
Shahram Minaei

In this paper, a new first-order current-mode (CM) universal filter employing two dual output second-generation current conveyors (DO-CCIIs), one resistor and a grounded capacitor is proposed. The proposed filter has low input and high output impedances; thus, it can be easily connected with other CM circuits. It can simultaneously realize first-order low-pass (LP) and all-pass (AP) responses and can provide high-pass (HP) response with interconnection of LP and AP responses. It can be tuned electronically by replacing with dual output second-generation current controlled conveyors (DO-CCCIIs) instead of DO-CCIIs and removing the resistor. It has only a resistor but no capacitor connected in series to X terminal of DO-CCII; accordingly, it can be operated at high frequencies. Also, it does not need any critical passive component matching conditions and cancellation constraints. A number of simulation results based on SPICE program are included to exhibit performance, workability and effectiveness of the proposed filter configuration.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350007 ◽  
Author(s):  
LEILA SAFARI ◽  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a novel first-order current-mode (CM) electronically tunable all-pass filter including one grounded capacitor and two dual-output current followers (DO-CFs) is presented. The used DO-CFs are implemented using only 10 MOS transistors granting the proposed CM all-pass filter extremely simple structure. The proposed filter is suitable for integrated circuit (IC) fabrication because it employs only a grounded capacitor and is free from passive component matching conditions. Interestingly the introduced configuration uses minimum number of components compared to other works. It also offers other interesting advantages such as, alleviating all disadvantages associated with the use of resistors, easy cascadability and satisfies all technology requirements such as small sizing, simple realization, low voltage and low power operation. Additionally, the circuit parameters can be easily set by adjusting control voltages. Most favorably, the proposed CM all-pass filter can be simply used as a voltage-mode (VM) all-pass filter with outstanding properties of adjustable gain and tunability. To further show the versatility of the proposed structure a sinusoidal oscillator is also derived from presented CM all-pass filter. Nonideal gain and parasitic impedance effects on developed CM filter are discussed. Finally, simulation results with SPICE program are included to confirm the theory.


2000 ◽  
Vol 36 (17) ◽  
pp. 1443 ◽  
Author(s):  
S. Özoğuz ◽  
A. Toker ◽  
O. Çiçekoğlu

Sign in / Sign up

Export Citation Format

Share Document