component matching
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 0)

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Predrag B. Petrović

New current mode grounded memcapacitor emulator circuits are reported in this paper, based on a single voltage differencing transconductance amplifier-VDTA and two grounded capacitors. The proposed circuits possess a single active component matching constraint, while the MOS-capacitance can be used instead of classical capacitance in a situation involving the simulator working within a high frequency range of up to 50 MHz, thereby offering obvious benefits in terms of realization utilising an IC-integrated circuit. The proposed emulator offers a variable switching mechanism—soft and hard—as well as the possibility of generating a negative memcapacitance characteristic, depending on the value of the frequency of the input current signal and the applied capacitance. The influence of possible non-ideality and parasitic effects was analysed, in order to reduce their side effects and bring the outcome to acceptable limits through the selection of passive elements. For the verification purposes, a PSPICE simulation environment with CMOS 0.18 μm TSMC technology parameters was selected. An experimental check was performed with off-the-shelf components-IC MAX435, showing satisfactory agreement with theoretical assumptions and conclusions.


Author(s):  
Bhartendu Chaturvedi ◽  
Jitendra Mohan ◽  
Jitender

An extra-X second-generation current conveyor (EXCCII) based first-order current-mode all-pass frequency selective structure is presented through this paper. A grounded resistor and a grounded capacitor are used as passive components. Single active element based realization directly correlates with the circuit’s simplicity. The grounded nature of passive components is advantageous from IC fabrication aspects. The proposed circuit offers cascadability support through low input impedance and high output impedance. The ability of the presented idea to deliver the desired output without meeting any stringent component matching condition further simplifies the circuit’s operation. Sensitivity performance of the proposed circuit is good. The quality performance at high frequency is another value addition to the circuit’s signal processing attributes. Analyses showing the circuit’s behavior under non-ideal conditions are also described in detail. Validation of theoretical analyses is supported by simulations carried out on PSPICE at 0.25[Formula: see text][Formula: see text]m technology.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Musa Ali Albrni ◽  
◽  
Mohammad Faseehuddin ◽  
Jahariah Sampe ◽  
Sawal Hamid Md Ali ◽  
...  

In this research, voltage differencing buffered amplifier (VDBA) is utilized in designing three novel multi-input single output (MISO) topologies of universal filters. The designed filters employ minimum number of passive components and did not require any passive component matching condition. Two of the designed filters can work in dual mode of operation simultaneously. The designed filters have inbuilt tunability property. The nonideal gain analysis and sensitivity analysis of the filters are also carried out to study the effect of process variations and process spread on the filter responses. The complete layout of the VDBA is designed using 0.18μm Silterra Malaysia process design kit (PDK) in Cadence design software. The parasitic extraction is done using Mentor graphics Calibre tool. The postlayout simulations bear close resemblance with the theoretical predictions.


2021 ◽  
Vol 6 (4) ◽  
pp. 262-281
Author(s):  
Tapas Kumar Paul ◽  
Radha Raman Pal

This study introduces a third order filter and a third order oscillator configuration. Both the circuits use two voltage difference transconductance amplifiers (VDTAs) and three grounded capacitors. By selecting the input and output terminals properly, current mode and transimpedance mode low-pass and band-pass filters can be obtained without component matching conditions. The natural frequency (ω0) can be tuned electronically. The oscillator circuit provides voltage and current outputs explicitly. The condition of oscillation (CO) and the frequency of oscillation (FO) can be adjusted orthogonally and electronically. The workability of the configurations is judged using TSMC CMOS 0.18 μm technology parameter as well as commercially available LM13700 integrated circuits (ICs). The simulation results show that: for ±0.9V power supply, the power consumption is 1.08 mW for both the configurations, while total harmonic distortions (THDs) are less than 2.06% and 2.17% for the filter and oscillator configurations, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1693
Author(s):  
Erkan Yuce ◽  
Leila Safari ◽  
Shahram Minaei ◽  
Giuseppe Ferri ◽  
Gianluca Barile ◽  
...  

This paper presents a new realization of a grounded simulated inductor using a single dual output second-generation voltage conveyor (VCII±) as an active building block, two resistors and one grounded capacitor. The main characteristic of the proposed circuit is that the value of the series resistor can be significantly reduced. Thus, it has the property of improved low-frequency performance. Another feature is the use of a grounded capacitor that makes the proposed circuit attractive for integrated circuit (IC) realization. A simple CMOS implementation of the required VCII± is used. However, a single passive component-matching condition is required for the proposed structure. As an application example, a standard fifth-order high-pass ladder filter is also given. SPICE simulations using 0.18 μm CMOS technology parameters and a supply voltage of ±0.9 V as well as experimental verifications, are carried out to support the theory.


2021 ◽  
Vol 11 (3) ◽  
pp. 171-190
Author(s):  
Tapas Kumar Paul ◽  
Suvajit Roy ◽  
Radha Raman Pal

In this contribution, nine new Grounded Inductance Simulators (GISs) using a single Multiple-Output Current Controlled Current Conveyor Transconductance Amplifier (MO-CCCCTA) and one grounded capacitor are proposed. Among them, two are lossless types and seven are lossy types. The use of a single grounded capacitor makes the circuits suitable for fabrication. All the proposed circuits are electronically tunable through the bias currents of MO-CCCCTA. Furthermore, no component matching conditions are needed for realizing them. The designed circuits are verified through PSPICE simulator with ± 0.9 V power supply. The simulation results show that for all the proposed circuits: maximum operating frequencies are about 12 MHz, power dissipation is less than 0.784 mW, Total Harmonic Distortions (THDs) are under 8.09%, and maximum output voltage noise at 1 MHz frequency is 14.094 nV/√Hz. To exhibit the workability of the proposed circuits, they are used to design band-pass, low-pass filter, parallel RLC resonator, and parasitic inductance cancelator.


2021 ◽  
Vol 9 (1) ◽  
pp. 18-21
Author(s):  
Dr. Nisha Walde ◽  
Mr. Prashant Kumar Mavi

One configuration for realizing voltage- mode multifunction filters using current feedback amplifiers (CFOA) is presented. The proposed voltage -mode circuit exhibit simultaneously low pass and band pass filters. The proposed circuits offer the following features: No requirements for component matching conditions; low active and passive sensitivities; employing only grounded capacitors and the ability to obtain multifunction filters from the same circuit configuration.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 840
Author(s):  
Xin Meng ◽  
Zhili Zhu ◽  
Min Chen ◽  
Yihao Xu

In the process of studying the steady-state performance and component matching of adaptive cycle engines with convertible fan system, it was found that the front fan and aft fan stage have a unique matching problem when the mode select valve is closed and engine is operating at higher Mach number conditions. The cause of this matching problem was studied with numeric simulation in this paper. Based on the features of adaptive cycle engines with convertible fan system, the possible methods and their feasibilities of solving this matching problem were also discussed. According to the results, the flow rate adjustment capacity of the aft fan stage directly determines the occurrence and severity of this matching problem. The matching problem can be ameliorated in some extent by either reducing the design second bypass ratio or adjusting the variable geometry mechanisms, but it cannot be completely solved at the aspect of component matching mechanism.


Author(s):  
Yudong Liu ◽  
Min Chen ◽  
Hailong Tang

Abstract Aero engines that fit the future have now increasingly attracted the attention of aerospace industry and academia. With this trend, many research projects have been carried out to explore future aero engine technologies. This paper focuses on engine design field, and aims to satisfy the future flight missions that may be unpredictably varying. However, the intrinsic strong coupling of engine component matching mechanism blocks acceleration of engine design. Under this condition, this paper comes up with the concept of smart engine architecture that via a series of engine decoupling strategies, the components can be decoupled to an extent that by properly selecting and assembling them, an engine that satisfies certain flight mission can be designed, this is named mission-oriented pluggable design mode in this paper. Following this idea, a multi-purpose engine design scheme is presented to demonstrate the potential of this engine design mode, and further value of smart engine architecture is discussed.


Author(s):  
Bin Hu ◽  
Chee Khiang Pang ◽  
Jie Wan ◽  
Shuyu Cao ◽  
Jern Khang Tan ◽  
...  

Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications.


Sign in / Sign up

Export Citation Format

Share Document