Resistorless Realization of First‐Order Current Mode Universal Filter

Radio Science ◽  
2020 ◽  
Vol 55 (1) ◽  
Author(s):  
B. Chaturvedi ◽  
J. Mohan ◽  
Jitender ◽  
A. Kumar
2016 ◽  
Vol 25 (05) ◽  
pp. 1650042 ◽  
Author(s):  
Erkan Yuce ◽  
Shahram Minaei

In this paper, a new first-order current-mode (CM) universal filter employing two dual output second-generation current conveyors (DO-CCIIs), one resistor and a grounded capacitor is proposed. The proposed filter has low input and high output impedances; thus, it can be easily connected with other CM circuits. It can simultaneously realize first-order low-pass (LP) and all-pass (AP) responses and can provide high-pass (HP) response with interconnection of LP and AP responses. It can be tuned electronically by replacing with dual output second-generation current controlled conveyors (DO-CCCIIs) instead of DO-CCIIs and removing the resistor. It has only a resistor but no capacitor connected in series to X terminal of DO-CCII; accordingly, it can be operated at high frequencies. Also, it does not need any critical passive component matching conditions and cancellation constraints. A number of simulation results based on SPICE program are included to exhibit performance, workability and effectiveness of the proposed filter configuration.


2000 ◽  
Vol 36 (17) ◽  
pp. 1443 ◽  
Author(s):  
S. Özoğuz ◽  
A. Toker ◽  
O. Çiçekoğlu

2019 ◽  
Vol 29 (09) ◽  
pp. 2050149 ◽  
Author(s):  
Bhartendu Chaturvedi ◽  
Jitendra Mohan ◽  
Atul Kumar ◽  
Kirat Pal

This paper deals with the realization of current-mode first-order universal filter based on multiple output second generation current conveyor (MO-CCII). Two MO-CCIIs, one resistor and one capacitor are used in the circuit realization. The proposed work includes additional features such as ease of cascadability, easily implementable in modern integrated circuit technology and no requirement of passive components matching condition. The additional beauty of the proposed filter structure is that all three responses can also be realized by interchanging the positions of passive components as well. Moreover, a possible transformation of the proposed current-mode type universal filter into a voltage-mode type universal filter using network transpose method is also explored. The possibility of mode transformation further expands the scope of proposed idea. The theoretical aspects are verified using cadence VIRTUOSO simulation results.


Sign in / Sign up

Export Citation Format

Share Document