Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions

2009 ◽  
Vol 133 (1-2) ◽  
pp. 114-122 ◽  
Author(s):  
J.L. Hernanz ◽  
V. Sánchez-Girón ◽  
L. Navarrete
2021 ◽  
Author(s):  
Enrico Balugani ◽  
Martina Maines ◽  
Denis Zannoni ◽  
Alessandro Buscaroli ◽  
Diego Marazza

<p>Soil carbon sequestration (SCS) has been identified by the IPCC as one of the most promising and cheap methodology to reduce atmospheric CO<sub>2</sub>. Moreover, an increase in soil organic carbon (SOC) levels improves soil quality by increasing soil structure (and, hence, resistance to erosion) and promoting soil ecosystems services like water retention, productivity, and biodiversity. Various agricultural techniques are available to increase SOC; among them, crop rotation can improve SOC through soil coverage, changes in water regimes, increase in both carbon inputs, and increase in soil aggregates formation.</p><p>SOC dynamic models, such as RothC, have been suggested by the IPCC as a way to evaluate the SCS potentials of different soils. Such models could also be used to evaluate the sequestration potential of different agricultural practices. Moreover RothC allows to estimate the time within which the SOC variation, due to a certain agronomic management, can be considered significant as measurable above a threshold value.</p><p>In this study, we evaluated the SOC changes for different crop rotations through direct measurements and RothC modelling, with the objective of: (a) estimating their SCS potential, and (b) propose a robust monitoring methodology for SCS practices. We performed the study in an agricultural field close to Ravenna (Italy) characterized by Cambisols and humid subtropical climate. Soil carbon content was assessed before the setup of the crop rotation, and after 3 years of rotation. A RothC model was calibrated with field data, and used to estimate SOC dynamics to 50 years, in order to assess long-term SCS. The model results were also used to assess the best methodology to estimate the SOC variation significance.</p><p>The measured SOC was similar to the equilibrium SOC predicted by the RothC model, on average, for the crop rotations. The measurements showed that the SOC, already low at the beginning of the experiment, further decreased due to the crop rotation practice. Of those tested, the best for SCS involves the following crops: corn, soybeans, wheat on tilled soil, and soybeans; while the worst is with corn, wheat on tilled soil, and wheat on untilled soil. However, the SOC variations predicted by RothC for the various rotations were too small to be observable in the field during experimentation. This could be due both to the uncertainty associated with SOC sampling and analysis, and to the short duration of the experiment. The moving average computations on the simulation values allowed us to assess the time required to measure the long-term trend of SOC variation as significant with respect to the environmental background, instrumental error, and SOC periodic fluctuations. That time was estimated to range from 8 to 50 years, changing depending on the rotation type. Periodic fluctuations in SOC should be carefully considered in a monitoring protocol to assess SCS.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 160 ◽  
Author(s):  
Chen Wei ◽  
Jan F. Adamowski ◽  
Yujia Liu ◽  
Yongkai Zhang ◽  
Chunfang Liu ◽  
...  

The practice of crop rotation can significantly impact carbon sequestration potential. In exploring whether crop rotation has the potential to improve soil carbon sequestration in China’s Loess Plateau, soil organic carbon (SOC), soil water content (SWC), soil bulk density (SBD), and soil pH were compared across the 0–1.0 m soil profile, under four crop rotation patterns: lentil–wheat–maize, wheat–potato–lentil, wheat–maize–potato, and wheat–flax–pea. The lentil–wheat–maize and wheat–maize–potato rotations have been practiced over the past 20 years, while the wheat–potato–lentil and wheat–flax–pea rotations were established in 1978 (~40 year rotations). The results showed that under the 20-year lentil–wheat–maize rotation, SOC was not significantly different to that of the wheat–maize–potato rotation, at 6.81 g kg−1 and 6.91 g kg−1, respectively. However, under the lentil–wheat–maize rotation, SWC (9.81%) and SBD (1.19 Mg m−3) were significantly higher, but soil pH (8.42) was significantly lower than the same metrics under wheat–maize–potato rotation (8.43% and 1.16 Mg m−3, and 8.50, respectively). For the 40-year rotations, SWC (9.19%) and soil pH (8.41) under the wheat–potato–lentil were not significantly different to that of the wheat–flax–pea (8.87%, and 8.40, respectively). SOC (6.06 g kg−1) was significantly lower, but SBD (1.18 Mg m−3) was significantly higher under the wheat–potato–lentil than the wheat–flax–pea (7.29 g kg−1, and 1.15 Mg m−3, respectively) rotations. Soil carbon sequestration for the lentil–wheat–maize and wheat–potato–lentil rotations was co-influenced by SWC, SBD, and soil pH, while for wheat–maize–potato and wheat–flax–pea rotations, it was co-influenced by SWC and soil pH. The economic value of the four studied crops is, in order: potato > maize > wheat > flax. The results of the present study suggest that the lentil–wheat–maize and maize–flax–pea rotations are the most suitable patterns to optimize simultaneous economic and ecological development of the study area.


CATENA ◽  
2019 ◽  
Vol 181 ◽  
pp. 104098 ◽  
Author(s):  
Xiang Gu ◽  
Xi Fang ◽  
Wenhua Xiang ◽  
Yelin Zeng ◽  
Shiji Zhang ◽  
...  

2016 ◽  
Vol 368 ◽  
pp. 28-38 ◽  
Author(s):  
Jorge Hernández ◽  
Amabelia del Pino ◽  
Eric D. Vance ◽  
Álvaro Califra ◽  
Fabián Del Giorgio ◽  
...  

2018 ◽  
Author(s):  
Talal Darwish ◽  
Therese Atallah ◽  
Ali Fadel

Abstract. North East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the situation of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1 : 5 Million) in topsoils (0–30 cm) and subsoils (30–100 cm). The maps showed that 69 % of soil resources present a stock of SOC below the threshold of 30 t ha−1. The stocks varied between ≈ 10 t ha−1 in shrublands and 60 t ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of SIC were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 t ha−1, against 20 to 45 t ha−1 for SOC. This paper also highlights the modest contribution of NENA region to global SOC stock in the topsoil not exceeding 4.1 %. The paper also discusses agricultural practices that are favorable to carbon sequestration. Practices of conservation agriculture could be effective, as the presence of soil cover reduces the evaporation, water and wind erosions. Further, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal, caused a notable increase of SOC after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist especially in aspects related to the effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.


Sign in / Sign up

Export Citation Format

Share Document