Evaluation of an unpalatable species ( Anthemis arvensis L.) as an alternative cover crop in olive groves under high grazing pressure by rabbits

2017 ◽  
Vol 246 ◽  
pp. 48-54 ◽  
Author(s):  
Antonio J. Carpio ◽  
María-Auxiliadora Soriano ◽  
José Guerrero-Casado ◽  
Laura M. Prada ◽  
Francisco S . Tortosa ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1412
Author(s):  
Antonio J. Carpio ◽  
María-Auxiliadora Soriano ◽  
José A. Gómez ◽  
Francisco S. Tortosa

Cover crops can be an effective means to protect soil and reduce risks of erosion in olive groves. However, for this protection to be significant, the vegetation must attain a significant amount of ground cover, which is estimated to be at least 30% during the rainy season. In olive groves on degraded soils, which occupy large surface areas in the olive-growing areas of the Mediterranean region, the establishment of cover crops may be an arduous challenge, particularly in areas with a high density of rabbits. In this study, we have selected two olive orchards with scarce natural vegetation located in Andalusia (southern Spain), in which rabbit populations intensively forage the cover crops, to test whether the self-seeding of an unpalatable species corn chamomile (Anthemis arvensis L.; A. arvensis for short) could achieve sufficient coverage for soil protection, in the year following that in which the broadcast-seeding was carried out for the implementation of cover crops. The hand broadcast-seeding of A. arvensis was carried out on sixteen elementary plots in the lanes of the two olive orchards in the autumn of 2015, and seed germination in the subsequent self-seeding took place in the autumn of 2016. The plant height and A. arvensis ground cover in these plots were measured throughout the two growth cycles, and aerial biomass was measured at maturity. The results showed that there were no significant differences in the maximum plant height between the two growth cycles (mean ± SD of 21.2 ± 1.6 cm), while the ground cover was significantly greater in the case of self-seeding, especially during the winter (37.2 ± 8.1 and 9.3 ± 6.7% for self-seeding and broadcast-seeding, respectively), and aerial biomass at maturity had more than doubled (99.7 and 43.9 g m−2, respectively). These data suggest that this unpalatable species could establish an effective herbaceous cover by means of self-seeding in olive groves on degraded soils that are being overgrazed owing to the high pressure of rabbits. Despite the poor establishment in the broadcast-seeding year, our findings indicate that A. arvensis might be an alternative cover crop that could help the sustainability of these threatened olive groves. Its high seed production (2000 to 4000 seeds per plant), and an early emergence just after the first autumn rains, should result in an increased ground cover by A. arvensis during the rainy season in the subsequent years of self-seeding. This, therefore, could contribute to soil conservation, in addition to providing other benefits of increased biodiversity and improvement for agricultural landscapes.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1041 ◽  
Author(s):  
Antonio Rodríguez-Lizana ◽  
Miguel Ángel Repullo-Ruibérriz de Torres ◽  
Rosa Carbonell-Bojollo ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández

Cover crops (CC)s are increasingly employed by farmers in olive groves. Spontaneous soil cover is the most commonly used CC. Its continuous utilization changes ruderal flora. It is necessary to study new CCs. Living CCs provide C and nutrients to soil during decomposition. Information on this issue in olive groves is scarce. A 4-year field study involving grab sampling of Brachypodium distachyon, Sinapis alba and spontaneous CC residues was conducted to study C and nutrient release from cover crop residues. Throughout the decomposition cycles, C, N and P release accounted for 40 to 58% of the C, N and P amounts in the residues after mowing. Most K was released (80–90%). Expressed in kg per hectare, the release of C and N in Brachypodium (C: 4602, N: 181, P: 29, K: 231) and Sinapis (C: 4806, N: 152, P: 18, K: 195) was greater than that in spontaneous CC (C: 3115, N: 138, P: 21, K: 256). The opposite results were observed for K. The Rickman model, employed to estimate the amount of C, N and P in residues, yielded a good match between the simulated and measured values. In comparison to spontaneous CC, the newly proposed CCs have a higher potential to provide soil with C and N.


2020 ◽  
Vol 18 (2) ◽  
pp. e0303
Author(s):  
Antonio J. Carpio ◽  
Marta Solana ◽  
Francisco S. Tortosa ◽  
Jesús Castro

Aim of study: To identify the environmental variables that affect the Cicadomorpha communities and the role played by cover crops in olive groves by comparing olive orchards with cover crop to those with bare ground.Area of study: Córdoba, Spain.Material and methods: Two study plots, one with cover crop and the other with bare ground, were delimited in three areas of olives orchards. Three passive samplings (May, June and July) were performed in each study plot to estimate the abundance and the species richness of potential Cicadomorphas vectors of Xylella fastidiosa. In each sampling, eight yellow sticky traps (22 × 35 cm) were randomly distributed in each study plot (n = 144 traps).Main results: The Cicadomorpha communities were mainly affected by landscape variables (such as the total surface and the distance to remnants of natural vegetation) and environmental variables (such as the temperature, moisture or ETo), whereas cover crops played a secondary role in the abundance of the Cicadomorpha.Research highlights: The results of the study suggest that Cicadomorpha richness and abundance depend on the structural complexity provided by cover crops (positive effect) and live hedges (negative effect), which may be owing to the higher food abundance and shelter when cover crops are present, whereas higher insect predation may occur close to hedges, probably owing to insectivorous song birds.


2021 ◽  
Vol 209 ◽  
pp. 104863
Author(s):  
Danielle Vieira Guimarães ◽  
Marx Leandro Naves Silva ◽  
Adnane Beniaich ◽  
Rafael Pio ◽  
Maria Isidória Silva Gonzaga ◽  
...  

Author(s):  
М. I. Dzhalalova ◽  
P. А. Abdurashidova ◽  
R. М. Zagidova

The coastal strip of the northwestern Caspian is characterized by hydromorphism and salinization processes which depending on the Caspian piled-up water, groundwater salinity, seawater, and salt composition of the underlying rocks. The migrational salts capability in deltoic ecosystem components in dynamic over the main representatives of pasture plants occurring in the Western Caspian and playing an important role in developing the theoretical foundations of a system of measures to increase the productivity of cover crop have studied. Salts migration from soil layers into plants which taking place in synthesis of material-energy and material resource of environment is one of the chains of bio-substrat links. The research results confirm the data that the ash elements stock in the ephemeral-absinthial group varies from 21.5 to 64.5 kg per 1 ha. The organogens prevail in them – 944 kg / ha, K is dominant, then Ca and Mg. The amount of halogens is 7.05 kg / ha, of which Cl portion includes 3.31 and Na – 2.80 kg / ha. In the ephemeral-absinthial group cenoses rather high values of aboveground phytomass are up to 50 centners / ha and the supply of ash elements (halogens 32.14 and organogens 36.18 mg-eq) is much higher compared to their content in soil (7.05 and 6, 31 mg-eq). In roots difference in quantity of organogens and halogens is insignificant – 2.03 and 2.04 mg-eq. We associate such differences with a greater proportion of absinthial in the aboveground phytomass composition


Author(s):  
Mark Licht ◽  
Liz Juchems ◽  
Jacqueline Comito ◽  
Matthew Helmers ◽  
Sarah Carlson
Keyword(s):  

Author(s):  
John E. Sawyer ◽  
Jose L. Pantoja ◽  
Daniel W. Barker

Author(s):  
John E. Sawyer ◽  
Jose L. Pantoja ◽  
Daniel W. Barker

Author(s):  
Mark Licht ◽  
Liz Juchems ◽  
Jacqueline Comito ◽  
Matthew Helmers ◽  
Sarah Carlson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document