Cold temperature increases nitrate accumulation in pilot-scale surface flow constructed wetlands with high rates of nitrogen removal

2021 ◽  
Vol 308 ◽  
pp. 107250
Author(s):  
Xiang Chen ◽  
Pei Luo ◽  
Feng Liu ◽  
Shunan Zhang ◽  
Hongfang Li ◽  
...  
2001 ◽  
Vol 44 (11-12) ◽  
pp. 469-476 ◽  
Author(s):  
D.M. Revitt ◽  
P. Worrall ◽  
D. Brewer

A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6°C and 20°C.


2021 ◽  
Vol 13 (22) ◽  
pp. 12456
Author(s):  
Tao Wang ◽  
Liping Xiao ◽  
Hongbin Lu ◽  
Shaoyong Lu ◽  
Xiaoliang Zhao ◽  
...  

The quality of micropolluted water is unstable and its substrate concentration fluctuates greatly. The goal is to predict the concentration effect on the treatment of nitrogen in a river with an actual low C/N ratio for the proposed full-scale Xiaoyi River estuary wetland, so that the wetland project can operate stably and perform the water purification function effectively in the long term. Two pilot-scale multistage constructed wetland–pond (MCWP) systems (S1 and S2, respectively) based on actual engineering with the same “front ecological oxidation ponds, two-stage horizontal subsurface flow constructed wetlands and surface flow constructed wetlands (SFCWs) as the core and postsubmerged plant ponds” as the planned process were constructed to investigate the effect of different influent permanganate indexes (CODMn) and total nitrogen (TN) contents on nitrogen removal from micropolluted river water with a fixed C/N ratio from summer to winter in the field. The results indicate that the TN removal rate in the S1 and S2 systems was significant (19.56% and 34.84%, respectively). During the process of treating this micropolluted water with a fixed C/N ratio, the influent of S2 with a higher CODMn concentration was conducive to the removal of TN. The TN removal rate in S2 was significantly affected by the daily highest temperature. There was significant nitrogen removal efficiency in the SFCWs. The C/N ratio was a major determinant influencing the nitrogen removal rate in the SFCWs. The organic matter release phenomenon in SFCWs with high-density planting played an essential role in alleviating the lack of carbon sources in the influent. This research strongly supports the rule that there is seasonal nitrogen removal in the MCWPs under different influent substrate concentrations, which is of guiding significance for practical engineering.


Sign in / Sign up

Export Citation Format

Share Document