scholarly journals Beyond the boundaries: Do spatio-temporal trajectories of land-use change and cross boundary effects shape the diversity of woody species in Uruguayan native forests?

2022 ◽  
Vol 323 ◽  
pp. 107646
Author(s):  
Leonardo R. Ramírez ◽  
Ina Säumel
2019 ◽  
Vol 11 (7) ◽  
pp. 885 ◽  
Author(s):  
Ustaoglu ◽  
Aydınoglu

. Population growth, economic development and rural-urban migration have caused rapid expansion of urban areas and metropolitan regions in Turkey. The structure of urban administration and planning has faced different socio-economic and political challenges, which have hindered the structured and planned development of cities and regions, resulting in an irregular and uneven development of these regions. We conducted detailed comparative analysis on spatio-temporal changes of the identified seven land-use/cover classes across different regions in Turkey with the use of Corine Land Cover (CLC) data of circa 1990, 2000, 2006 and 2012, integrated with Geographic Information System (GIS) techniques. Here we compared spatio-temporal changes of urban and non-urban land uses, which differ across regions and across different hierarchical levels of urban areas. Our findings have shown that peri-urban areas are growing more than rural areas, and even growing more than urban areas in some regions. A deeper look at regions located in different geographical zones pointed to substantial development disparities across western and eastern regions of Turkey. We also employed multiple regression models to explain any possible drivers of land-use change, regarding both urban and non-urban land uses. The results reveal that the three influencing factors-socio-economic characteristics, regional characteristics and location, and development constraints, facilitate land-use change. However, their impacts differ in different geographical locations, as well as with different hierarchical levels.


2014 ◽  
Vol 687-691 ◽  
pp. 3078-3082
Author(s):  
Ning Pan ◽  
Ke Wang ◽  
Jing Jing Tan

Frequent land-use changes might produce a large amount of historical data which are valuable for data mining and decision-making. Based on the traditional Whole-state-recording Mode, the Special-state-recording Mode was proposed, focusing on the temporal aspect. This mode could optimize the land use database and reduce redundant change record. It could also improve data rollback and historical backtracking functions. The mode was successfully applied to land use planning in Zhejiang Province.


2019 ◽  
Vol 681 ◽  
pp. 211-225 ◽  
Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Yi An ◽  
Fangning Shi ◽  
...  

Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 181 ◽  
Author(s):  
Deb Aryal ◽  
Danilo Morales Ruiz ◽  
César Tondopó Marroquín ◽  
René Pinto Ruiz ◽  
Francisco Guevara Hernández ◽  
...  

Land use change from forests to grazing lands is one of the important sources of greenhouse gas emissions in many parts of the tropics. The objective of this study was to analyze the extent of soil organic carbon (SOC) loss from the conversion of native forests to pasturelands in Mexico. We analyzed 66 sets of published research data with simultaneous measurements of soil organic carbon stocks between native forests and pasturelands in Mexico. We used a generalized linear mixed effect model to evaluate the effect of land use change (forest versus pasture), soil depth, and original native forest types. The model showed that there was a significant reduction in SOC stocks due to the conversion of native forests to pasturelands. The median loss of SOC ranged from 31.6% to 52.0% depending upon the soil depth. The highest loss was observed in tropical mangrove forests followed by highland tropical forests and humid tropical forests. Higher loss was detected in upper soil horizon (0–30 cm) compared to deeper horizons. The emissions of CO2 from SOC loss ranged from 46.7 to 165.5 Mg CO2 eq. ha−1 depending upon the type of original native forests. In this paper, we also discuss the effect that agroforestry practices such as silvopastoral arrangements and other management practices like rotational grazing, soil erosion control, and soil nutrient management can have in enhancing SOC stocks in tropical grasslands. The results on the degree of carbon loss can have strong implications in adopting appropriate management decisions that recover or retain carbon stocks in biomass and soils of tropical livestock production systems.


Sensor Review ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 844-856
Author(s):  
Zhenzhen Zhao ◽  
Jiandi Feng

Purpose The purpose of this paper is to analyze the characteristics of spatio-temporal dynamics and the evolution of land use change is essential for understanding and assessing the status and transition of ecosystems. Such analysis, when applied to Horqin sandy land, can also provide basic information for appropriate decision-making. Design/methodology/approach By integrating long time series Landsat imageries and geographic information system (GIS) technology, this paper explored the spatio-temporal dynamics and evolution-induced land use change of the largest sandy land in China from 1983 to 2016. Accurate and consistent land use information and land use change information was first extracted by using the maximum likelihood classifier and the post-classification change detection method, respectively. The spatio-temporal dynamics and evolution were then analyzed using three kinds of index models: the dynamic degree model to analyze the change of regional land resources, the dynamic change transfer matrix and flow direction rate to analyze the change direction, and the barycenter transfer model to analyze the spatial pattern of land use change. Findings The results indicated that land use in Horqin sandy land during the study period changed dramatically. Vegetation and sandy land showed fluctuating changes, cropland and construction land steadily increased, water body decreased continuously, and the spatial distribution patterns of land use were generally unbalanced. Vegetation, sandy land and cropland were transferred frequently. The amount of vegetation loss was the largest. Water body loss was 473.6 km2, which accounted for 41.7 per cent of the total water body. The loss amount of construction land was only 1.0 km2. Considerable differences were noted in the rate of gravity center migration among the land use types in different periods, and the overall rate of construction land migration was the smallest. Moreover, the gravity center migration rates of the water body and sandy land were relatively high and were related to the fragile ecological environment of Horqin sandy land. Originality/value The results not only confirmed the applicability and effectiveness of the combined method of remote sensing and GIS technology but also revealed notable spatio-temporal dynamics and evolution-induced land use change throughout the different time periods (1983-1990, 1990-2000, 2000-2010, 2010-2014, 2014-2016 and 1983-2016).


Sign in / Sign up

Export Citation Format

Share Document