Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis

2021 ◽  
Vol 322 ◽  
pp. 107663
Author(s):  
Ping Liao ◽  
Yanni Sun ◽  
Xiangcheng Zhu ◽  
Haiyuan Wang ◽  
Yong Wang ◽  
...  
2011 ◽  
Vol 16 (6) ◽  
pp. 721-731 ◽  
Author(s):  
Xiaoming Xu ◽  
Jie Tang ◽  
Zhaoyang Li ◽  
Chang Liu ◽  
Weizheng Han

2019 ◽  
Vol 234 ◽  
pp. 47-54 ◽  
Author(s):  
Yu Jiang ◽  
Daniela Carrijo ◽  
Shan Huang ◽  
Ji Chen ◽  
Nimlesh Balaine ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 465 ◽  
Author(s):  
Kiwamu Ishikura ◽  
Untung Darung ◽  
Takashi Inoue ◽  
Ryusuke Hatano

This study investigated spatial factors controlling CO2, CH4, and N2O fluxes and compared global warming potential (GWP) among undrained forest (UDF), drained forest (DF), and drained burned land (DBL) on tropical peatland in Central Kalimantan, Indonesia. Sampling was performed once within two weeks in the beginning of dry season. CO2 flux was significantly promoted by lowering soil moisture and pH. The result suggests that oxidative peat decomposition was enhanced in drier position, and the decomposition acidify the peat soils. CH4 flux was significantly promoted by a rise in groundwater level, suggesting that methanogenesis was enhanced under anaerobic condition. N2O flux was promoted by increasing soil nitrate content in DF, suggesting that denitrification was promoted by substrate availability. On the other hand, N2O flux was promoted by lower soil C:N ratio and higher soil pH in DBL and UDF. CO2 flux was the highest in DF (241 mg C m−2 h−1) and was the lowest in DBL (94 mg C m−2 h−1), whereas CH4 flux was the highest in DBL (0.91 mg C m−2 h−1) and was the lowest in DF (0.01 mg C m−2 h−1), respectively. N2O flux was not significantly different among land uses. CO2 flux relatively contributed to 91–100% of GWP. In conclusion, it is necessary to decrease CO2 flux to mitigate GWP through a rise in groundwater level and soil moisture in the region.


Author(s):  
E. Hoxha ◽  
D. Maierhofer ◽  
M.R.M Saade ◽  
A. Passer

Abstract Purpose A detailed assessment of the environmental impacts of the building requires a substantial amount of data that is time- and effort-consuming. However, limitation of the system boundary to certain materials and components can provide misleading impact calculation. In order to calculate the error gap between detailed and simplified assessments, the purpose of this article is to present a detailed calculation of the environmental impacts of the building by including in the system boundary, the technical, and electrical equipment. Method To that end, the environmental impacts of a laboratory and research building situated in Graz-Austria are assessed following the EN-15978 norm. Within the system boundaries of the study, the material and components of building fabric, technical, and electronic equipment for the building lifecycle stages of production, construction, replacement, operational energy and water, and end-of-life are considered. The input data regarding the quantity of materials is collected from the design and tendering documents, invoices, and from discussion with the head of the building’s construction site. Primary energy and global warming potential indicators are calculated on the basis of a functional unit of 1 m2 of energy reference area (ERA) per year, considering a reference building service life of 50 years. Results and discussion The primary energy indicator of the building is equal to 1698 MJ/m2ERA/year. The embodied impacts are found to be responsible for 28% of which 6.4% is due to technical and electronic equipment. Furthermore, the embodied impacts for the global warming potential, equal to 28.3 kg CO2e/m2ERA/year, are responsible for 73%. Together, technical and electrical equipment are the largest responsible aspects, accounting for 38% of the total impacts. Simplified and detailed result comparisons show a gap of 29% and 7.7% for global warming and primary energy indicators. These differences were from the embodied impacts and largely from the exclusion of electrical equipment from the study’s system boundary. Conclusions Technical and electrical equipment present a significant contribution to the overall environmental impacts of the building. Worthy of inclusion in the system boundary of the study, the environmental impacts of technical and electrical equipment must be calculated in detail or considered with a reliable ratio in the early design phase of the project. Further research is necessary to address the detailed impact calculation of the equipment and notably the minimization of their impacts.


Author(s):  
Md.Musharof Hussain Khan ◽  
Ivan Deviatkin ◽  
Jouni Havukainen ◽  
Mika Horttanainen

Abstract Purpose Waste recycling is one of the essential tools for the European Union’s transition towards a circular economy. One of the possibilities for recycling wood and plastic waste is to utilise it to produce composite product. This study analyses the environmental impacts of producing composite pallets made of wood and plastic waste from construction and demolition activities in Finland. It also compares these impacts with conventional wooden and plastic pallets made of virgin materials. Methods Two different life cycle assessment methods were used: attributional life cycle assessment and consequential life cycle assessment. In both of the life cycle assessment studies, 1000 trips were considered as the functional unit. Furthermore, end-of-life allocation formula such as 0:100 with a credit system had been used in this study. This study also used sensitivity analysis and normalisation calculation to determine the best performing pallet. Result and discussion In the attributional cradle-to-grave life cycle assessment, wood-polymer composite pallets had the lowest environmental impact in abiotic depletion potential (fossil), acidification potential, eutrophication potential, global warming potential (including biogenic carbon), global warming potential (including biogenic carbon) with indirect land-use change, and ozone depletion potential. In contrast, wooden pallets showed the lowest impact on global warming potential (excluding biogenic carbon). In the consequential life cycle assessment, wood-polymer composite pallets showed the best environmental impact in all impact categories. In both attributional and consequential life cycle assessments, plastic pallet had the maximum impact. The sensitivity analysis and normalisation calculation showed that wood-polymer composite pallets can be a better choice over plastic and wooden pallet. Conclusions The overall results of the pallets depends on the methodological approach of the LCA. However, it can be concluded that the wood-polymer composite pallet can be a better choice over the plastic pallet and, in most cases, over the wooden pallet. This study will be of use to the pallet industry and relevant stakeholders.


Sign in / Sign up

Export Citation Format

Share Document