Occupancy and detection of agricultural threats: The case of Philaenus spumarius, European vector of Xylella fastidiosa

2022 ◽  
Vol 324 ◽  
pp. 107707
Author(s):  
Sabina Avosani ◽  
Clara Tattoni ◽  
Valerio Mazzoni ◽  
Marco Ciolli
Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 225 ◽  
Author(s):  
Beatriz Dáder ◽  
Elisa Viñuela ◽  
Aránzazu Moreno ◽  
María Plaza ◽  
Elisa Garzo ◽  
...  

The threat imposed by the bacterial pathogen Xylella fastidiosa to crops of utter importance to European agriculture such as olive, stone fruit and grapevine calls for immediate research against the meadow spittlebug, Philaenus spumarius (L.), the main European vector. Management tools should consider reducing juveniles of vector populations growing on weeds or cover crops during spring as nymphs have limited movement and do not contribute to disease spread. We examined a wide range of insecticides with different modes of action against P. spumarius nymphs in laboratory and semi-field glasshouse conditions. Pyrethroids (delthamethrin and λ-cyhalothrin) and natural pyrethrin (Pirecris®) + piperonyl butoxide (PBO) efficacy surpassed 86% after 24 h of exposure, without significant differences in the PBO amount tested. The inclusion of PBO caused a 3-fold increase in the mortality of P. spumarius nymphs compared to pyrethrin alone. Sulfoxaflor (Closer®) exhibited similar efficacy at 48 and 72 h but it was slow acting and mortality only reached 60% at 24 h. The LC90 was 34 ppm at 72 h. Pymetrozine, spirotetramat, azadirachtin and kaolin were not effective against nymphs (mortality <33%) although in azadirachtin-treated plants, mortality had a 3-fold increase from 24 to 72 h. Our results will help decision-making policy bodies to set up a sustainable integrated pest management of P. spumarius in areas where X. fastidiosa becomes a problem.


2019 ◽  
Vol 92 (3) ◽  
pp. 1101-1109 ◽  
Author(s):  
Giacomo Santoiemma ◽  
Giovanni Tamburini ◽  
Francesco Sanna ◽  
Nicola Mori ◽  
Lorenzo Marini

Redia ◽  
2021 ◽  
Vol 104 ◽  
pp. 75-88
Author(s):  
ELISABETTA GARGANI ◽  
CLAUDIA BENVENUTI ◽  
LEONARDO MARIANELLI ◽  
PIO FEDERICO ROVERSI ◽  
MASSIMO RICCIOLINI ◽  
...  

The vector‐borne bacterium Xylella fastidiosa(Wells and Raju) causes several serious diseases to plants. Recently, different subspecies of X. fastidiosa were reported in some European countries. The risk of the bacterium’s spread on the entire European territory is very high; therefore, it has been added into the priority pest list (2019/1702/EU Regulation). The main purposes of this work were to verify the presence of potential vectors in areas at a high risk of introduction in Tuscany and to ascertain the presence of X. fastidiosa in these insect vectors. Over 4,000 Auchenorrhyncha were collected and analysed from 2015 to 2019. Among the xylem sap-feeder putative vectors, most of the insects collected belonged to the family Aphrophoridae, but also many species of leafhopper were identified. Overall, in Tuscany four species were the most represented: Philaenus spumarius(L.), Cicadella viridis(L.), Synophropsis lauri (Horvath) and Neophilaenus campestris(Fallen).In 2018 an outbreak of X. fastidiosa subsp. multiplex was reported in Monte Argentario (Grosseto province, Tuscany). In 2019 X. fastidiosa subspecies multiplex ST 87 was detected in seven P. spumarius and three N. campestris collected from the infected area.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 324 ◽  
Author(s):  
Vincenzo Cavalieri ◽  
Giuseppe Altamura ◽  
Giulio Fumarola ◽  
Michele di Carolo ◽  
Maria Saponari ◽  
...  

Diseases associated with Xylella fastidiosa have been described mostly in North and South America. However, during the last five years, widespread X. fastidiosa infections have been reported in a constrained area of the Apulia region (southern Italy), in olives trees suffering a severe disease, denoted as Olive Quick Decline Syndrome (OQDS). Because many xylem sap-feeding insects can function as vectors for the transmission of this exotic pathogen in EU, several research programs are ongoing to assess the role of candidate vectors in the spread of the infections. Initial investigations identified Philaenus spumarius (L.) as the predominant vector species in the olive orchards affected by the OQDS. Additional experiments have been carried out during 2016 and 2017 to assess the role of other species. More specifically, adults of the spittlebugs Philaenus italosignus Drosopolous and Remane, Neophilaenus campestris (Fallen) and of the planthopper Latilica tunetana (Matsumura) (Issidae) have been tested in transmission experiments to assess their ability to acquire the bacterium from infected olives and to infect different susceptible hosts (olives, almond, myrtle –leaf milkwort, periwinkle). Acquisition rates determined by testing individual insects in quantitative PCR assays, ranging from 5.6% in N. campestris to 22.2% in P. italosignus, whereas no acquisition was recorded for L. tunetana. Successful transmissions were detected in the recipient plants exposed to P. italosignus and N. campestris, whereas no trasmissions occurred with L. tunetana. The known vector Philaenus spumarius has been included in all the experiments for validation. The systematic surveys conducted in 2016 and 2017 provided further evidence on the population dynamics and seasonal abundance of the spittlebug populations in the olive groves.


2018 ◽  
Vol 43 (1) ◽  
Author(s):  
Crescenza Dongiovanni ◽  
Giuseppe Altamura ◽  
Michele Di Carolo ◽  
Giulio Fumarola ◽  
Maria Saponari ◽  
...  

2021 ◽  
Author(s):  
Dylan J Beal ◽  
Monica Cooper ◽  
Matthew P Daugherty ◽  
Alexander H Purcell ◽  
Rodrigo P P Almeida

Abstract The meadow spittlebug, Philaenus spumarius (Linnaeus) (Hemiptera: Aphrophoridae), is a vector of the plant pathogen Xylella fastidiosa; however, its role in recent outbreaks of Pierce’s disease of grapevine (PD) in California is unclear. While the phenology and ecology of P. spumarius can help determine its contributions to PD epidemics, both remain poorly described in the North Coast vineyards of California. We assessed the phenology of P. spumarius in the region. Spittlemasses were first observed in February or March, while the emergence of adult spittlebugs did not occur until April or May depending on the year. Analysis of sweep and trap data from 2016 to 2018 revealed significant effects of survey month, vineyard site, and year on adult abundance in sweep and trap surveys. Spittlebug adults were present in the vineyards from April until December, with the greatest number of adults by sweep net in May or June, whereas adults on traps peaked between July and November. Analysis of natural infectivity in groups of field-collected spittlebug adults showed significant difference in transmission rates among months. Spittlebugs successfully transmitted Xylella fastidiosa (Wells) (Xanthomonadales: Xanthomonadaceae) to potted grapevines between July and December. The greatest risk of X. fastidiosa transmission by P. spumarius was in December (60%) followed by October (30%). However, the infectivity patterns of the meadow spittlebug did not align with the historical paradigm of California North Coast PD. We discuss alternative hypotheses in which P. spumarius could play a role in the epidemiology of this disease.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 446
Author(s):  
Luca Lombardo ◽  
Pierluigi Rizzo ◽  
Carmine Novellis ◽  
Veronica Vizzarri

Xylella fastidiosa subsp. pauca, strain CoDiRO is the bacterium responsible for the onset of the disease known as the olive quick decline syndrome, which has been causing a phytosanitary and economic emergency in the Apulia region since 2013. To date, three insect species have been identified as pathogenic carriers of X. fastidiosa. With the advancement of the infection front, and the possibility of pathogenic insects being “hitchhiked” over long distances, the monitoring of the vectors of X. fastidiosa in the Italian regions bordering Apulia is an increasingly contingent issue for the rapid containment of the bacterium and the protection of the olive-growing heritage. Accordingly, the present research concerned the capture and recognition of the vector insects of X. fastidiosa in the upper Ionian coasts of Calabria (Italy) to evaluate the possible presence of the bacterium through molecular diagnostic techniques. The sampling allowed us to ascertain the presence of Philaenus spumarius and Neophilaenus campestris and their preferential distribution in olive groves and meadows, whereas all the 563 individuals tested negative for the pathogen.


Sign in / Sign up

Export Citation Format

Share Document