molecular diagnostic techniques
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 40)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Akanksha Roberts ◽  
Raghuraj Singh Chouhan ◽  
Deepshikha Shahdeo ◽  
Narlawar Sagar Shrikrishna ◽  
Veerbhan Kesarwani ◽  
...  

Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus. Herein, we have summarized conventional diagnostic methods such as Chest-CT (Computed Tomography), RT-PCR, Loop Mediated Isothermal Amplification (LAMP), Reverse Transcription-LAMP (RT-LAMP), as well new modern diagnostics such as CRISPR–Cas-based assays, Surface Enhanced Raman Spectroscopy (SERS), Lateral Flow Assays (LFA), Graphene-Field Effect Transistor (GraFET), electrochemical sensors, immunosensors, antisense oligonucleotides (ASOs)-based assays, and microarrays for SARS-CoV-2 detection. This review will also provide an insight into an ongoing research and the possibility of developing more economical tools to tackle the COVID-19 pandemic.


Author(s):  
V. Khandelwal ◽  
T. Sharma ◽  
S. Gupta ◽  
S.V. Singh

Rapid industrialization and successful green revolution have introduced a wide array of chemicals into our environment; some of these chemicals entered in ecosystem; gets accumulated and exert serious health and ecological problems. These toxic substances can enter the food chain and emphasize pathological changes which damage either cell, organ or system (circulatory, immune, respiratory, digestive, nervous, reproductive and musculo-skeletal etc.) by altering structure and/or function of biological components; DNA, RNA, proteins, lipids and carbohydrates. This review article provides certain molecular diagnostic techniques used for their robust and accurate detection at molecular level. Investigations conducted during 2020-2021 where various review and research articles were surveyed and then extracted to enlist congestive datum for rapid detection of toxicological changes in animals. In our investigations we concluded that toxic substances present in our environment affects health of animals by altering structure and functioning of biomolecules and their concerned system. These cytological and systemic changes can be detected with the help of molecular diagnostic techniques including dideoxysequencing, pyrosequencing, allele specific RT-PCR, CRISPER/Cas, genotyping and microarrays etc. present collection of data will provide congestive information for rapid toxicological detection at molecular level.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1259
Author(s):  
Ipsita Pal Bhowmick ◽  
Tulika Nirmolia ◽  
Apoorva Pandey ◽  
Sarala K. Subbarao ◽  
Aatreyee Nath ◽  
...  

With India aiming to achieve malaria elimination by 2030, several strategies have been put in place. With that aim, mass surveillance is now being conducted in some malaria-endemic pockets. As dry season mass surveillance has been shown to have its importance in targeting the reservoir, a study was undertaken to assess the parasite load by a sensitive molecular method during one of the mass surveys conducted in the dry winter period. It was executed in two malaria-endemic villages of Dhalai District, Tripura, in northeast India, also reported as P. falciparum predominated area. The present study found an enormous burden of Rapid Diagnostic Test negative malaria cases with P. vivax along with P. vivax and P. falciparum mixed infections during the mass surveillance from febrile and afebrile cases in dry winter months (February 2021–March 2021). Of the total 150 samples tested, 72 (48%) were positive and 78 (52%) negative for malaria by PCR. Out of the 72 positives, 6 (8.33%) were P. falciparum, 40 (55.55%) P. vivax, and 26 (36.11%) mixed infections. Out of 78 malaria negative samples, 6 (7.7%) were with symptoms, while among the total malaria positive, 72 cases 7 (9.8%) were with symptoms, and 65 (90.2%) were asymptomatic. Out of 114 samples tested by both microscopy and PCR, 42 samples turned out to be submicroscopic with 4 P. falciparum, 23 P. vivax, and 15 mixed infections. Although all P. vivax submicroscopic infections were asymptomatic, three P. falciparum cases were found to be febrile. Evidence of malaria transmission was also found in the vectors in the winter month. The study ascertained the use of molecular diagnostic techniques in detecting the actual burden of malaria, especially of P. vivax, in mass surveys. As Jhum cultivators in Tripura are at high risk, screening for the malarial reservoirs in pre-Jhum months can help with malaria control and elimination.


2021 ◽  
Vol 15 (9) ◽  
pp. e0009817
Author(s):  
Roberta Iatta ◽  
Jairo Alfonso Mendoza-Roldan ◽  
Maria Stefania Latrofa ◽  
Antonio Cascio ◽  
Emanuele Brianti ◽  
...  

Visceral leishmaniasis (VL) caused by Leishmania infantum is endemic in the Mediterranean basin with most of the infected human patients remaining asymptomatic. Recently, the saurian-associated Leishmania tarentolae was detected in human blood donors and in sheltered dogs. The circulation of L. infantum and L. tarentolae was investigated in humans, dogs and cats living in the Pelagie islands (Sicily, Italy) by multiple serological and molecular testing. Human serum samples (n = 346) were tested to assess the exposure to L. infantum by immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) and to L. tarentolae by IFAT. Meanwhile, sera from dogs (n = 149) and cats (n = 32) were tested for both Leishmania species by IFAT and all blood samples by specific sets of real time-PCR for L. infantum and L. tarentolae. The agreement between serological tests performed for human samples, and between serological and molecular diagnostic techniques for both human and animal samples were also assessed. Overall, 41 human samples (11.8%, 95% CI: 8.9–15.7) were positive to L. infantum (5.2%, 95% CI: 3.3–8.1), L. tarentolae (5.2%, 95% CI: 3.3–8.1) and to both species (1.4%, 95% CI: 0.6–3.3) by serology and/or molecular tests. A good agreement among the serological tests was determined. Both Leishmania spp. were serologically and/or molecularly detected in 39.6% dogs and 43.7% cats. In addition to L. infantum, also L. tarentolae circulates in human and animal populations, raising relevant public health implications. Further studies should investigate the potential beneficial effects of L. tarentolae in the protection against L. infantum infection.


2021 ◽  
Vol 14 (9) ◽  
pp. e245037
Author(s):  
Murali Krishna ◽  
Santosh Kumar ◽  
Kalpesh Mahesh Parmar ◽  
Venkatesh Dhana Sekaran

Renal cell cancer (RCC) is incidentally detected on imaging in 50%–60% of cases. Among the RCCs, clear cell variant is most common and classically seen as heterogenous enhancing lesion on CT imaging. Hypoenhancing mass presents a diagnostic dilemma with differential diagnosis being urothelial carcinoma, fat poor angiomyolipoma, oncocytoma or rarer variants of RCC. Such cases require further evaluation in form of urine cytology or newer molecular diagnostic techniques. Here, we present a case of renal mass with minimal enhancement on CT scan and imaging features suggestive of upper tract urothelial cancer. Final histopathology revealed the mass to be chromophobe variant of renal cell carcinoma.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yashpal S. Malik ◽  
Prashant Kumar ◽  
Mohd Ikram Ansari ◽  
Maged G. Hemida ◽  
Mohamed E. El Zowalaty ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.


2021 ◽  
Vol 9 ◽  
Author(s):  
Homa Hajjaran ◽  
Reza Saberi ◽  
Alireza Borjian ◽  
Mahdi Fakhar ◽  
Seyed Abdollah Hosseini ◽  
...  

Leishmaniasis is one of the most common vector-borne parasitic diseases in Iran. Leishmania species identification is necessary for epidemiological aspects, precise prognosis, control and treatment of the disease. We systematically searched all the studies, reports, and documentation related to species identification and geographical distribution of causative agents of cutaneous (CL), mucosal (ML), and visceral leishmaniasis (VL) using DNA-based molecular diagnostic techniques in Iran. International databases including PubMed, ScienceDirect, Embase, Google Scholar, Scopus, and Web of Science were systemically searched for English articles and Iran's databases including SID, IranMedex and Magiran were searched for Persian reports and articles. Searches were performed from 1999 to 2019 (20 years). The current review was conducted using the keywords: cutaneous leishmaniasis, visceral leishmaniasis, Leishmania species, Human, Molecular, PCR, and Iran. The study quality was evaluated using the NOS checklist. This meta-analysis procedure was accomplished using STATA, version 2.7.9. Of the 3,426 records identified in the initial search, 154 articles met inclusion criteria and qualified for the systematic review and meta-analysis. In subgroup analysis, the pooled frequency of causative agents of CL isolates was 67.3% (95% CI: 59.51–74.67%) for L. major and 32.1% (95% CI: 24.72–39.87%) for L. tropica. In addition, the pooled frequency of causative agents of VL isolates was 97.1% (95% CI: 94.6–98.8%) for L. infantum and 2.9% (95% CI: 1.12–5.37%) for L. tropica. The findings of this study showed that the main causative agents of CL and VL in Iran are L. major and L. infantum, respectively. Moreover, kinetoplast DNA (kDNA) and internal transcriber spacer (ITS) were the most used markers for identifying Leishmania species. The current study provides valuable data to encourage and direct researchers as well as public health managers in the comprehensive leishmaniasis control and prevention planning in Iran.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mahnaz Norouzi ◽  
Mohammad Shafiei ◽  
Zeinab Abdollahi ◽  
Paniz Miar ◽  
Hamid Galehdari ◽  
...  

BackgroundFamilial cancers comprise a considerable distribution of colorectal cancers (CRCs), of which only about 5% occurs through well-established hereditary syndromes. It has been demonstrated that deleterious variants at the newly identified cancer-predisposing genes could describe the etiology of undefined familial cancers.MethodsThe present study aimed to identify the genetic etiology in a 32-year-old man with early onset familial CRC employing several molecular diagnostic techniques. DNA was extracted from tumoral and normal formalin-fixed-paraffin-embedded (FFPE) blocks, and microsatellite instability (MSI) was evaluated. Immunohistochemistry staining of MMR proteins was performed on tumoral FFPE blocks. Next-generation sequencing (NGS), multiplex ligation-dependent amplification (MLPA) assay, and Sanger sequencing were applied on the genomic DNA extracted from peripheral blood. Data analysis was performed using bioinformatics tools. Genetic variants interpretation was based on ACMG.ResultsMSI analysis indicated MSI-H phenotype, and IHC staining proved no expressions of MSH2 and MSH6 proteins. MLPA and NGS data showed no pathogenic variants in MMR genes. Further analysis of NGS data revealed a candidate WRN frameshift variant (p.R389Efs*3), which was validated with Sanger sequencing. The variant was interpreted as pathogenic since it met the criteria based on the ACMG guideline including very strong (PVS1), strong (PS3), and moderate (PM2).ConclusionWRN is a DNA helicase participating in DNA repair pathways to sustain genomic stability. WRN deficient function may contribute to CRC development that is valuable for further investigation as a candidate gene in hereditary cancer syndrome diagnosis.


Sign in / Sign up

Export Citation Format

Share Document