philaenus spumarius
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clara Lago ◽  
Elisa Garzo ◽  
Aránzazu Moreno ◽  
Laura Barrios ◽  
Antonio Martí-Campoy ◽  
...  

AbstractThe recent emergence of Xylella fastidiosa in Europe is a major threat to agriculture, including olive, almond and grape. Philaenus spumarius is the predominant vector of X. fastidiosa in Europe. Understanding vector movement is critical for developing effective control measures against bacterial spread. In this study, our goal was to set up a flight-mill protocol to assess P. spumarius flight potential and to analyse how different variables may affect its flight behaviour. We found that P. spumarius was able to fly ≈ 500 m in 30 min with a maximum single flight of 5.5 km in 5.4 h. Based on the observations, the flight potential of the females was higher in spring and autumn than in summer, and that of the males was highest in autumn. Moreover, we found that P. spumarius had a higher flight potential during the morning and the night than during the afternoon. Our results revealed that P. spumarius is likely to disperse much further than the established sizes of the infected and buffer zones designated by the EU. This knowledge on the flight potential of P. spumarius will be critical for improving management actions against P. spumarius and the spread of X. fastidiosa in Europe.


2021 ◽  
Vol 189 ◽  
pp. 112848
Author(s):  
Eirini Anastasaki ◽  
Aikaterini Psoma ◽  
George Partsinevelos ◽  
Dimitrios Papachristos ◽  
Panagiotis Milonas

Author(s):  
Marina Morente ◽  
Daniele Cornara ◽  
Aránzazu Moreno ◽  
Alberto Fereres
Keyword(s):  

Author(s):  
Nicola Bodino ◽  
Vincenzo Cavalieri ◽  
Mattia Pegoraro ◽  
Giuseppe Altamura ◽  
Francesca Canuto ◽  
...  

Author(s):  
M. Godefroid ◽  
M. Morente ◽  
T. Schartel ◽  
D. Cornara ◽  
A. Purcell ◽  
...  

AbstractThe bacterium Xylella fastidiosa (Xf) is an invasive insect-borne pathogen, which causes lethal diseases to important crops including olives, citrus, almonds and grapes as well as numerous forest, ornamental, and uncultivated plants. Outbreaks of Xf-related plant diseases are currently occurring in the Mediterranean region, causing substantial losses to various agricultural sectors. Several models have recently been published to identify which regions are at highest risk in Europe; however, such models did not consider the insect vectors, which constitute the key driver of short-range Xf spread. We fitted bioclimatic species distribution models to depict the macroclimatic preferences of the meadow spittlebug Philaenus spumarius L. (1978) (Hemiptera: Aphrophoridae), the major epidemiologically relevant vector currently responsible for Xf spread in the Europe. Many regions of Western Europe and Mediterranean basin are predicted by models as highly climatically suitable for this vector, including all regions where severe Xf have occurred so far. Conversely, the driest and warmest areas of the Mediterranean basin are predicted as little suitable for P. spumarius. Models forecast that agricultural-important parts of the southern Mediterranean area might experience a substantial decrease in climatic suitability for P. spumarius by the period 2040–2060. Areas predicted as highly suitable just for the bacterium but not optimal for this vector are apparently still free of severe Xf outbreaks, suggesting that climate tolerances of P. spumarius might partly explain the current spatial pattern of Xf outbreaks in Europe and should always be considered in further risk assessments.


2021 ◽  
Vol 288 (1954) ◽  
pp. 20210731
Author(s):  
Elisabeth A. Bergman ◽  
Emma L. Green ◽  
Philip G. D. Matthews

The xylem sap of vascular plants is an unlikely source of nutrition, being both nutrient poor and held under tensions (negative pressures) that can exceed 1 MPa. But some insects feed on xylem sap exclusively, extracting copious quantities using a muscular cibarial pump. However, neither the strength of the insect's suction, nor the direct energetic cost of xylem ingestion, have ever been quantified. Philaenus spumarius froghoppers were used to address these gaps in our knowledge. Micro-CT scans of its cibarium and measurements of cibarial muscle sarcomere length revealed that P. spumarius can generate a maximum tension of 1.3 ± 0.2 MPa within its cibarium. The energetic cost of xylem extraction was quantified using respirometry to measure the metabolic rate (MR) of P. spumarius while they fed on hydroponically grown legumes, while xylem sap excretion rate and cibarial pumping frequency were simultaneously recorded. Increasing the plants' xylem tensions up to 1.1 MPa by exposing their roots to polyethylene glycol did not reduce the insects’ rate of xylem excretion, but significantly increased both MR and pumping frequency. We conclude that P. spumarius can gain energy feeding on xylem sap containing previously reported energy densities and at xylem tensions up to their maximum suction capacity.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 584
Author(s):  
Imane Akassou ◽  
Sabina Avosani ◽  
Valentina Caorsi ◽  
Vincenzo Verrastro ◽  
Marco Ciolli ◽  
...  

Insects that communicate by vibrational signals live in a complex interactive network of communication. Most studies on insect intrasexual behavior, based on plant-borne vibrational signals, have targeted few individuals. Despite their importance, behaviors that occur within groups were often overlooked. The study of multiple individuals, when insects occur in high density could simulate the environment in which they live and provide more reliable information on their behavior. In semi-field conditions, we investigated the intrasexual behavior of the meadow spittlebug, Philaenus spumarius. Vibrational signals exchanged among individuals of the same sex were recorded throughout their adult stage, from late spring to early autumn, and during the day, from the morning to the evening using a laser vibrometer. Males were less active than females throughout the season and their interactions were less frequent compared to females. Intrasexual interactions were characterized by signal overlapping in both unisex groups, in addition to signal alternating only in the case of males. In conclusion, the study of signaling behavior in intrasexual groups contributed to a better understanding of P. spumarius social behavior. We discuss the hypothesis of a possible competitive behavior between males and cooperative behavior between females.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11425
Author(s):  
Sofia G. Seabra ◽  
Ana S.B. Rodrigues ◽  
Sara E. Silva ◽  
Ana Carina Neto ◽  
Francisco Pina-Martins ◽  
...  

Understanding patterns of population differentiation and gene flow in insect vectors of plant diseases is crucial for the implementation of management programs of disease. We investigated morphological and genome-wide variation across the distribution range of the spittlebug Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Auchenorrhyncha, Aphrophoridae), presently the most important vector of the plant pathogenic bacterium Xylella fastidiosa Wells et al., 1987 in Europe. We found genome-wide divergence between P. spumarius and a very closely related species, P. tesselatus Melichar, 1899, at RAD sequencing markers. The two species may be identified by the morphology of male genitalia but are not differentiated at mitochondrial COI, making DNA barcoding with this gene ineffective. This highlights the importance of using integrative approaches in taxonomy. We detected admixture between P. tesselatus from Morocco and P. spumarius from the Iberian Peninsula, suggesting gene-flow between them. Within P. spumarius, we found a pattern of isolation-by-distance in European populations, likely acting alongside other factors restricting gene flow. Varying levels of co-occurrence of different lineages, showing heterogeneous levels of admixture, suggest other isolation mechanisms. The transatlantic populations of North America and Azores were genetically closer to the British population analyzed here, suggesting an origin from North-Western Europe, as already detected with mitochondrial DNA. Nevertheless, these may have been produced through different colonization events. We detected SNPs with signatures of positive selection associated with environmental variables, especially related to extremes and range variation in temperature and precipitation. The population genomics approach provided new insights into the patterns of divergence, gene flow and adaptation in these spittlebugs and led to several hypotheses that require further local investigation.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 448
Author(s):  
Ignacio Vicente-Díez ◽  
Rubén Blanco-Pérez ◽  
María del Mar González-Trujillo ◽  
Alicia Pou ◽  
Raquel Campos-Herrera

The meadow spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the primary vector of Xylella fastidiosa (Proteobacteria: Xanthomonadaceae) in Europe, a pest–disease complex of economically relevant crops such as olives, almonds, and grapevine, managed mainly through the use of broad-spectrum pesticides. Providing environmentally sound alternatives to reduce the reliance on chemical control is a primary challenge in the control of P. spumarius and, hence, in the protection of crops against the expansion of its associated bacterial pathogen. Entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling arthropods. Recent technological advances in field applications, including improvements in obtaining cell-free supernatant from their symbiotic bacteria, allow their successful implementation against aerial pests. Thus, this study aimed to evaluate, for the first time, the efficacy of EPN applications against nymphal instars of P. spumarius. We tested four EPN species and the cell-free supernatant of their corresponding symbiotic bacteria: Steinernema feltiae–Xenorhabdus bovienii, S. carpocapsae–X. nematophila, S. riojaense–X. kozodoii, and Heterorhabditis bacteriophora–Photorhabdus laumondii subsp. laumondii. First, we showed that 24 and 72 h exposure to the foam produced by P. spumarius nymphs did not affect S. feltiae virulence. The direct application of steinernematid EPNs provided promising results, reaching 90, 78, and 53% nymphal mortality rates after five days of exposure for S. carpocapsae, S. feltiae, and S. riojaense, respectively. Conversely, the application of the cell-free supernatant from P. laumondii resulted in nymphal mortalities of 64%, significantly higher than observed for Xenorhabdus species after five days of exposure. Overall, we demonstrated the great potential of the application of specific EPNs and cell-free supernatant of their symbiont bacteria against P. spumarius nymphs, introducing new opportunities to develop them as biopesticides for integrated management practices or organic vineyard production.


Sign in / Sign up

Export Citation Format

Share Document