Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements

2011 ◽  
Vol 151 (9) ◽  
pp. 1252-1266 ◽  
Author(s):  
Martin Béland ◽  
Jean-Luc Widlowski ◽  
Richard A. Fournier ◽  
Jean-François Côté ◽  
Michel M. Verstraete
2014 ◽  
Vol 184 ◽  
pp. 82-97 ◽  
Author(s):  
Martin Béland ◽  
Dennis D. Baldocchi ◽  
Jean-Luc Widlowski ◽  
Richard A. Fournier ◽  
Michel M. Verstraete

1997 ◽  
Vol 86 (1-2) ◽  
pp. 1-15 ◽  
Author(s):  
Sornprach Thanisawanyangkura ◽  
Herve Sinoquet ◽  
Pierre Rivet ◽  
Michel Cretenet ◽  
Eric Jallas

Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Mark J. Renz ◽  
Joseph M. DiTomaso

Herbicides currently registered for use near water have been ineffective for control of perennial pepperweed. Previous research has demonstrated that mowing followed by an application of glyphosate at 3.33 kg ae ha−1to resprouting tissue can enhance the control of perennial pepperweed. The objectives of this study were to determine the mechanism(s) responsible for the enhanced effectiveness of glyphosate in combination with mowing. Mowing plants altered the leaf area distribution within the canopy. In mowed areas, the majority of leaf area was in the basal third of the canopy, whereas the bulk of the leaf area was in the top third of the canopy in unmowed plots. This change in plant architecture affected the deposition pattern of the spray solution. Unmowed plants retained 49 to 98% and 42 to 83% of a dye solution within the middle and top thirds of the canopy at the Colusa and Woodland sites, respectively, with only 1.9 to 6.0% dye deposited on the basal third of the canopy at both sites. In contrast, mowed plants had 18 to 34% and 26 to 70% of the dye retained in the basal third of the canopy at the Colusa and Woodland sites, respectively. Greenhouse studies showed that14C-glyphosate applied to basal leaves of mowed plants translocated significantly more to belowground tissue. Unmowed plants accumulated 0.37% of the applied14C-glyphosate in belowground tissue 48 h after labeling. In contrast, mowed plants accumulated 6.7%14C-glyphosate in the belowground tissue. In field studies, estimates of basipetal seasonal translocation rates using total nonstructural carbohydrate pools of roots indicate that mowing did not change the translocation rate. However, the delay in application timing to allow plants to resprout appeared to synchronize applications with maximal translocation of carbohydrates to belowground structures. We hypothesize that the change in the canopy structure of perennial pepperweed after mowing results in fewer aboveground sinks and greater deposition of herbicide to basal leaves where it can preferentially be translocated to the root system. Furthermore, the delay between mowing and resprouting synchronized maximal belowground translocation rates with herbicide application timing. These factors all appear to be involved in the observed enhanced control of perennial pepperweed when combining mowing and glyphosate.


2007 ◽  
Vol 64 (5) ◽  
pp. 491-501 ◽  
Author(s):  
Jan Čermák ◽  
Jan Gašpárek ◽  
Francesca De Lorenzi ◽  
Hamlyn G. Jones

2007 ◽  
Vol 17 (3) ◽  
pp. 341-345 ◽  
Author(s):  
Dennis R. Decoteau

The influence of polyethylene (plastic) mulch surface color (white versus black) on leaf area distribution of tomato (Lycopersicon esculentum) was investigated in simulated planting beds at two sampling periods: an early sampling with relatively young plants that had been in the mulch treatment for 22 days and a late sampling with relatively mature plants that had been in the mulch treatments for 50 days. At the early sampling period, tomato plants grown with white mulch had more axillary leaves than plants in the black mulch, resulting in a greater axillary:main leaf area ratio for the plants with white mulch. Leaf area for total leaves (main + axillary) and plant biomass was unaffected by mulch surface color at the early sampling period. Tomato plants grown in black mulch at the early sampling period had significantly more area of main leaves partitioned to node 3, whereas plants grown in white mulch had more area of main leaves in nodes 8 and 9. Plants grown in the white mulch treatment had significantly more axillary leaf area at nodes 1, 2, and 3, whereas plants in black mulch had more axillary leaf area at node 6. At the later sampling period, most of the leaf area from both mulch treatments was recorded in the axillary leaves and there was no effect of mulch surface color on the amount of total leaf area partitioned to main, axillary, or total leaves; to the amount of biomass of the measured top growth; or to the nodal distribution of leaf area among main leaves or axillary leaves. Tomato plants in white mulch had significantly more fruit on plants at the later sampling period than plants in the black mulch. Mulch surface color also affected the plant light environment and soil temperatures. These results suggest that the polyethylene mulch surface color can induce changes in the plant microclimate and affect leaf area distribution of young tomato plants (as recorded at the early sampling) and fruiting of relatively more mature plants (as recorded at the later sampling).


2011 ◽  
Vol 103 (4) ◽  
pp. 1198-1204 ◽  
Author(s):  
T. D. Setiyono ◽  
A. M. Bastidas ◽  
K. G. Cassman ◽  
A. Weiss ◽  
A. Dobermann ◽  
...  

2009 ◽  
Vol 18 (6) ◽  
pp. 676 ◽  
Author(s):  
E. Louise Loudermilk ◽  
J. Kevin Hiers ◽  
Joseph J. O'Brien ◽  
Robert J. Mitchell ◽  
Abhinav Singhania ◽  
...  

Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual fuel types (shrubs) and heterogeneous fuelbed plots. Spatially explicit point-intercept fuel sampling also measured fuelbed heights and volume, while leaf area and biomass measurements of whole and sectioned shrubs were determined from destructive sampling. Volumes obtained by LIDAR and traditional methods showed significant discrepancies. We found that traditional means overestimated volume for shrub fuel types because of variation in leaf area distribution within shrub canopies. LIDAR volume estimates were correlated with biomass and leaf area for individual shrubs when factored by species, size, and plant section. Fuelbed heights were found to be highly variable among the fuel plots, and ground LIDAR was more sensitive to capturing the height variation than traditional point intercept sampling. Ground LIDAR is a promising technology capable of measuring complex surface fuels and fuel characteristics, such as fuel volume.


1980 ◽  
Vol 7 (4) ◽  
pp. 415 ◽  
Author(s):  
DM Whitfield ◽  
DJ Connor

The three-dimensional display of each leaf of a number of adjacent plants was measured with a spatial coordinate apparatus on five occasions during the growth of a tobacco crop. Several architectural characteristics of the foliage display were estimated from these data. A truncated ellipsoid adequately described plant extent and allowed the calculation and analysis of vertical profiles of leaf area distribution within the plant volume. Foliage densities ranged between 5 and 12 m-1 in small plants and in the upper regions of larger plants. Plants with leaf areas in excess of 0.8 m2 had a leaf area density of approximately 3.2 m-1. In mature crops, the foliage extended further into the inter-row space than into the space occupied by neighbouring plants in the row. Mean leaf angle was 40° and elevation distributions were remarkably similar throughout growth and development. Foliage inclination consistently decreased with depth in the canopy. Azimuth distributions of foliage were not significantly different from that of a uniform distribution. The data are discussed in the context of assumptions that are commonly used in representations of canopy structure.


Sign in / Sign up

Export Citation Format

Share Document