Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem

2017 ◽  
Vol 240-241 ◽  
pp. 1-9 ◽  
Author(s):  
Y.B. Hao ◽  
C.T. Zhou ◽  
W.J. Liu ◽  
L.F. Li ◽  
X.M. Kang ◽  
...  
2021 ◽  
Vol 18 (24) ◽  
pp. 6579-6588
Author(s):  
Alexander J. Turner ◽  
Philipp Köhler ◽  
Troy S. Magney ◽  
Christian Frankenberg ◽  
Inez Fung ◽  
...  

Abstract. Solar-induced chlorophyll fluorescence (SIF) has previously been shown to strongly correlate with gross primary productivity (GPP); however this relationship has not yet been quantified for the recently launched TROPOspheric Monitoring Instrument (TROPOMI). Here we use a Gaussian mixture model to develop a parsimonious relationship between SIF from TROPOMI and GPP from flux towers across the conterminous United States (CONUS). The mixture model indicates the SIF–GPP relationship can be characterized by a linear model with two terms. We then estimate GPP across CONUS at 500 m spatial resolution over a 16 d moving window. We observe four extreme precipitation events that induce regional GPP anomalies: drought in western Texas, flooding in the midwestern US, drought in South Dakota, and drought in California. Taken together, these events account for 28 % of the year-to-year GPP differences across CONUS. Despite these large regional anomalies, we find that CONUS GPP varies by less than 4 % between 2018 and 2019.


Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 218
Author(s):  
Changjun Wan ◽  
Changxiu Cheng ◽  
Sijing Ye ◽  
Shi Shen ◽  
Ting Zhang

Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change would have a serious impact on the social economy, ecological development and life safety. In recent decades, many studies about extreme precipitation have been performed on spatio-temporal variation patterns under global changes; little research has been conducted on the regionality and persistence, which tend to be more destructive. This study defines extreme precipitation events by percentile method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation, taking China in July as a case. The study result showed that the STSM with the LSAM can effectively detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July 2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective, China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in Xinjiang, where extreme precipitation events often take place earlier and persist longer.


Author(s):  
Maurizio Iannuccilli ◽  
Giorgio Bartolini ◽  
Giulio Betti ◽  
Alfonso Crisci ◽  
Daniele Grifoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document