Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event

2018 ◽  
Vol 252 ◽  
pp. 208-219 ◽  
Author(s):  
Ana Meijide ◽  
Chandra Shekhar Badu ◽  
Fernando Moyano ◽  
Nina Tiralla ◽  
Dodo Gunawan ◽  
...  
2016 ◽  
Author(s):  
Evelyn Hassler ◽  
Marife D. Corre ◽  
Syahrul Kurniawan ◽  
Edzo Veldkamp

Abstract. Oil palm and rubber plantations cover large areas of former rainforest in Sumatra, Indonesia, supplying the global demand for these crops. Although forest conversion is known to influence soil nitrous oxide (N2O) and nitric oxide (NO) fluxes, measurements from oil palm and rubber plantations are scarce (for N2O) or nonexistent (for NO). Our study aimed to (1) quantify changes in soil-atmosphere fluxes of N oxides with forest conversion to rubber and oil palm plantations, and (2) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in texture but both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forest, rubber trees interspersed in secondary forest (termed as jungle rubber), both as reference land uses, and smallholder rubber and oil palm plantations, as converted land uses. Each land use had four replicate plots within each landscape. Soil N2O fluxes were measured monthly from December 2012 to December 2013, and soil NO fluxes were measured four times between March and September 2013. In the loam Acrisol landscape, we also conducted weekly to bi-weekly soil N2O flux measurements from July 2014 to July 2015 in a large-scale oil palm plantation with four replicate plots for comparison with smallholder oil palm plantations. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0.58 to 0.76) due to the generally low soil N availability in the reference land uses that further decreased with land-use conversion. Over one-year measurements, the temporal patterns of soil N-oxide fluxes were influenced by soil mineral N and water contents. Across landscapes, annual soil N2O emissions were controlled by gross nitrification and sand content, which also suggest the influence of soil N and water availability. Soil N2O fluxes (µg N m−2 h−1) were: 7 ± 2 to 14 ± 7 (reference land uses), 6 ± 3 to 9 ± 2 (rubber), 12 ± 3 to 12 ± 6 (smallholder oil palm), and 42 ± 24 (large-scale oil palm). Soil NO fluxes (µg N m−2 h−1) were: −0.6 ± 0.7 to 5.7 ± 5.8 (reference land uses), −1.2 ± 0.5 to −1.0 ± 0.2 (rubber) and −0.2 ± 1.2 to 0.7 ± 0.7 (smallholder oil palm). The low N fertilizer application in smallholder oil palm plantations (commonly 48 to 88 kg N ha−1 yr−1) resulted in N-oxide losses of only 0.2–0.7 % of the applied N. To improve estimate of soil N-oxide fluxes from oil palm plantations in this region, studies should focus on large-scale plantations (which usually have two to four times higher N fertilization rates than smallholders) with frequent measurements following fertilizer application.


2016 ◽  
Vol 232 ◽  
pp. 110-118 ◽  
Author(s):  
Thomas Guillaume ◽  
Anna Mareike Holtkamp ◽  
Muhammad Damris ◽  
Bernhard Brümmer ◽  
Yakov Kuzyakov

2011 ◽  
Vol 366 (1582) ◽  
pp. 3256-3264 ◽  
Author(s):  
Paul Woodcock ◽  
David P. Edwards ◽  
Tom M. Fayle ◽  
Rob J. Newton ◽  
Chey Vun Khen ◽  
...  

South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.


1974 ◽  
Vol 38 (1) ◽  
pp. 193-200 ◽  
Author(s):  
J. A. RAJARATNAM ◽  
J. B. LOWRY
Keyword(s):  
Oil Palm ◽  

2015 ◽  
Vol 43 (2) ◽  
pp. 147
Author(s):  
Roberdi , ◽  
Sobir , ◽  
Sudirman Yahya ◽  
Nurita Toruan-Mathius ◽  
Tony Liwang

<p>ABSTRACT</p><p>Molecular genetic analysis of hard bunch phenomenon in oil palm was done in order to elucidate the role of genetic factor underlying hard bunch in oil palm plantation. The aim of this study was to identify the AFLP primer combination that co-segregates with hard bunch phenotype related gene in oil palm. Molecular analysis was done by bulk segregant analysis approach. DNA was isolated from leaves of the normal and hard bunch palm. DNA from ten individual palms from each category were pooled and used as a template. A total of 56 AFLP primer combinations were selected for selection of polymorphic primer, and as a result it was found that 22 AFLP primer combinations (39.28%) were polymorphic. A total of 48 individual of palm DNA containing 24 individual for each group were further genotyped by those 22 polymorphic markers. Of these, one AFLP primer combination (E-ACC/M-CTG) was obtained as a co-segregated marker that distinguished the hard bunch DNA from the normal one. Based on the analysis of the target sequence aligned to the oil palm DNA sequences available in database, we found that our sequence has similarity with Ty-1 copia retrotransposon. This sequence distribute in all 16 linkage group of oil palm genome.</p><p>Keywords: abnormal fruits, AFLP, oil palm, Ty-1 copia retrotransposon</p>


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Sri Walyoto

This article analyzes the loss of carbon dioxide (CO2) released in the forest conversion to oil palm plantations. This research data gathered from the relevant secondary data and relate published reports. This research finds that a loss of release of carbon dioxide (CO2) per hectare of US $ 9,800 with a carbon price of USD2 of US $ 14,000 carbon price of USD3 and US $ 19,600 in carbon price of USD4. In addition, this conversion also has a significant impact on global warming (GWP) and global climate change. Keywords: oil palm plantation, CO2 release, GWP, climate change. 


Sign in / Sign up

Export Citation Format

Share Document