Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China

2013 ◽  
Vol 123 ◽  
pp. 32-44 ◽  
Author(s):  
S. Liu ◽  
J.Y. Yang ◽  
X.Y. Zhang ◽  
C.F. Drury ◽  
W.D. Reynolds ◽  
...  
2011 ◽  
Vol 71 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Ingrid Martinez G ◽  
Carlos Ovalle ◽  
Alejandro Del Pozo ◽  
Hamil Uribe ◽  
Natalia Valderrama V ◽  
...  

2020 ◽  
Vol 197 ◽  
pp. 104521 ◽  
Author(s):  
Alfred Obia ◽  
Gerard Cornelissen ◽  
Vegard Martinsen ◽  
Andreas Botnen Smebye ◽  
Jan Mulder

2014 ◽  
Vol 692 ◽  
pp. 70-73 ◽  
Author(s):  
Jian Bo Wang ◽  
Xiao Ling Fu ◽  
Hai Xiu Zhong ◽  
Ji Feng Wang ◽  
Hong Wei Ni

Response of soil respiration in temperate wetlands in northeast China was studied from June 2009 to September 2011. Li-Cor 6400 infrared gas analyzer connected with a chamber was used to quantify the soil respiration. Results showed that soil respiration displayed a distinct seasonal pattern, with higher values observed in midsummer and lower values in spring and autumn. Furthermore, soil respiration exhibited a significant inter-annual variation. In addition, soil respiration presented significant positive exponential relationships with soil temperature. Whereas, significant exponential decay relationships between soil respiration rate and soil water content was found. In this ecosystem, soil temperature, soil water content and plant phenology together control soil respiration.


2005 ◽  
Vol 85 (3) ◽  
pp. 453-461 ◽  
Author(s):  
M R Carter ◽  
D. Holmstrom ◽  
J B Sanderson ◽  
J. Ivany ◽  
R. DeHaan

Conservation tillage (CT) for potato crop land has been increasing in Atlantic Canada, but producers are concerned that fields managed in this way may be wet, slow to warm in spring, have increased debris at harvest, exhibit higher soil compaction and result in reduced yield. The objective of this study was to compare the effects of four tillage practices on potato yield, soil properties and weed growth over a 3-yr period. The four tillage practices were: (1 ) conventional autumn mouldboard plowing followed by spring secondary tillage; (2) spring mouldboard plowing followed by secondary tillage; (3) autumn chisel plowing followed by spring secondary tillage; and (4) spring CT. Tillage practices significantly affected soil water content (at both the 0- to 15-cm and 15- to 30-cm soil depths) with CT generally showing a greater soil water content prior to spring tillage in comparison to the other treatments. Soil temperature (at the 2- to 5-cm soil depth) prior to spring tillage was not influenced by tillage differences. Conservation tillage increased soil compaction at the 10- to 30-cm soil depth, but not to a level considered detrimental to root growth. Tillage treatments had no effect on amount of soil clods and plant debris passing over the harvester. Potato yield (range of 43 to 51 Mg ha-1) and quality were not adversely influenced by tillage practices. There were few treatment effects on individual weed species or groupings of annual, perennial and total weeds. Overall, CT can be a viable management alternative to conventional tillage because this practice does not negatively affect field management, potato yield, or soil quality. Key words: Conservation tillage, residue management, potato, soil temperature, soil moisture, tillage methods


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 273 ◽  
Author(s):  
Xiaobin Jin ◽  
Shenmin Wang ◽  
Yinkang Zhou

The Sanjiang Plain of north-east China is presently the second largest freshwater marsh in China. The drainage and use of marshes for agricultural fields occurred in the past 50 years, resulting in the increase in cultivated land from about 2.9 × 108 m2 in 1893 to 4.57 × 1010 m2 in 1994. Under human disturbance in the past half century, the environment in Sanjiang Plain has had significant change. We hypothesised that environmental factors such as soil moisture, soil temperature, and soil N levels affect the rates of soil organic C mineralisation and the nature of the controls on microbial CO2 production to change with depth through the soil profile in the freshwater marsh in the Sanjiang Plain. In a series of experiments, we measured the influence of soil temperature, soil water content, and nitrogen additions on soil microbial CO2 production rates. The results showed that Q10 values (the factor by which the CO2 production rate increases when the temperature is increased by 10°C) significantly increased with soil depth through the soil profile (P < 0.05). The average Q10 values for the surface soils were 2.7 (0–0.2 m), significantly lower than that (average Q10 values 3.3) for the subsurface samples (0.2–0.6 m) (P < 0.05), indicating that C mineralisation rates were more sensitive to temperature in subsurface soil horizons than in surface horizons. The maximum respiration rate was measured at 60% water hold capacity for each sample. The quadratic equation function adequately describes the relationship between soil respiration and soil water content, and the R2 values were > 0.80. The sensitivity of microbial CO2 production rate response to soil water content for surface soils (0–0.2 m) was slightly lower than for subsurface soils (0.2–0.6 m). The responses of actual soil respiration rates to nitrogen fertilisation were different for surface and subsurface soils. In the surface soils (0–0.2 m), the addition of N caused a slight decreased in respiration rates compared with the control, whereas, in the subsurface soils (0.2–0.6 m), the addition of N tended to increase microbial CO2 production rates, and the addition of 10 µg N/g soil treatment caused twice the increase in C mineralisation rates of the control. Our results suggested that the responses of microbial CO2 production to changes in soil moisture, soil temperature, and soil N levels varied with soil depth through the profile, and subsurface soil organic C was more sensitive to temperature increase and nitrogen inputs in the freshwater marsh of the Sanjiang Plain.


2021 ◽  
Vol 34 (4) ◽  
pp. 887-894
Author(s):  
GUSTAVO HADDAD SOUZA VIEIRA ◽  
ARILDO SEBASTIÃO SILVA ◽  
ARUN DILIPKUMAR JANI ◽  
LUSINERIO PREZOTTI ◽  
PAOLA ALFONSA VIEIRA LO MONACO

ABSTRACT This study aimed to determine how crop residue placement and composition would affect soil water content and temperature during the dry season in the central region of Espírito Santo state, Brazil. A 19-week field study was conducted from April to August 2017. A 2 x 4 factorial study with four replications was implemented using a randomized complete block design. Factors were soil management [conventional tillage (CT) and no soil disturbance (ND)] and residue amendment [maize (Zea mays L.), sunn hemp (Crotalaria juncea L.), a maize-sunn hemp mixture, and a no amendment control]. Soil water content and temperature were measured weekly at predetermined soil depth intervals. Soil water content was higher in ND plots amended with surface residues than under all other treatments in the 0 to 0.05 m depth range. All residue amendments in this range were equally effective in conserving soil water. Surface residues reduced soil temperature by up to 8.4 °C relative to the control in ND plots. Incorporating residue amendments by CT cancelled all temperature-moderating benefits provided by surface residues. These results indicate that surface residues from cereals, legumes, or cereal/legume mixtures are equally effective in conserving soil water and moderating soil temperature during the dry season. Additional research is needed to determine how improved soil environmental conditions, generated by surface residues, would affect nutrient acquisition and crop performance.


2016 ◽  
Vol 61 (No. 5) ◽  
pp. 213-219 ◽  
Author(s):  
K. Copec ◽  
D. Filipovic ◽  
S. Husnjak ◽  
I. Kovacev ◽  
S. Kosutic

2014 ◽  
Vol 6 (4) ◽  
pp. 125 ◽  
Author(s):  
Anne Karuma ◽  
Peter Mtakwa ◽  
Nyambilila Amuri ◽  
Charles K. Gachene ◽  
Patrick Gicheru

Soil water conservation through tillage is one of the appropriate ways of addressing soil moisture deficit in rainfed agriculture. This study evaluated the effects of tillage practices on soil moisture conservation and crop yields in Mwala District, Eastern Kenya during the long rains (LR) and short rains (SR) of 2012/13. Six tillage systems: Disc plough (MB), Disc plough and harrowing (MBH), Ox-ploughing (OX), Subsoiling – ripping (SR), Hand hoe and Tied Ridges (HTR) and Hand hoe only (H) and, three cropping systems namely, sole maize, sole bean and maize - bean intercrop, were investigated in a split-plot design with four replicates. Data on soil water content was monitored at different weeks after planting and the crop yields at end of each growing season. A three-season average shows that soil water content and crop yields were higher in conventional tillage methods compared to the conservation tillage methods. Long term tillage experiments are thus required at different locations, under various environmental and soil conditions to validate the study findings.


Sign in / Sign up

Export Citation Format

Share Document