Differences in water-use-efficiency between two Vitis vinifera cultivars (Grenache and Tempranillo) explained by the combined response of stomata to hydraulic and chemical signals during water stress

2015 ◽  
Vol 156 ◽  
pp. 1-9 ◽  
Author(s):  
S. Martorell ◽  
A. Diaz-Espejo ◽  
M. Tomàs ◽  
A. Pou ◽  
H. El Aou-ouad ◽  
...  
2015 ◽  
Vol 42 (2) ◽  
pp. 198 ◽  
Author(s):  
Maria Clara Merli ◽  
Matteo Gatti ◽  
Marco Galbignani ◽  
Fabio Bernizzoni ◽  
Eugenio Magnanini ◽  
...  

Several recent papers have shown that in grapevine (Vitis vinifera L.), interpretation of responses to drought can differ depending upon the parameter chosen to express water use efficiency (WUE). In the present paper, a series of WUE expressions, including physiological and agronomical, were compared in potted grapevines (Vitis vinifera L. cv. Sangiovese) that were either well-watered (WW) or subjected to progressive drought before veraison (WS) by supplying decreasing fractions (i.e. 70%, 50% and 30% of daily vine transpiration (Trd) determined gravimetrically before vines were fully rewatered. Although single-leaf intrinsic and instantaneous WUE increased with water stress severity, seasonal and whole-canopy WUE were similar to that before stress, at 70% Trd and upon rewatering, but dropped during severe water stress. WUE calculated as mass of DW stored in annual biomass (leaves, canes and bunches) per litre of water used did not differ on a seasonal basis, whereas WS plants showed lower must soluble solids at harvest, and unchanged colour and phenolic concentration in spite of smaller berries with higher relative skin growth. Results confirm that whole-canopy WUE is a much better index than any single-leaf based WUE parameter for extrapolation to agronomic WUE and actual grape composition. In our specific case study, it can be recommended that water supply to drought-stressed Sangiovese grapevines before veraison should not be lower than 70% of daily vine water use.


2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2017 ◽  
Vol 16 (2) ◽  
Author(s):  
M.E.A. Borba ◽  
G.M. Maciel ◽  
E.F. Fraga Júnior ◽  
C.S. Machado Júnior ◽  
G.R. Marquez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document