Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District

2017 ◽  
Vol 179 ◽  
pp. 205-214 ◽  
Author(s):  
Huimeng Zhang ◽  
Yunwu Xiong ◽  
Guanhua Huang ◽  
Xu Xu ◽  
Quanzhong Huang
Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3614
Author(s):  
Dongwang Wang ◽  
Zhenhua Wang ◽  
Jinzhu Zhang ◽  
Bo Zhou ◽  
Tingbo Lv ◽  
...  

To further explore the effects of different soil textures on soil leaching and cotton (Gossypium hirsutum L.) growth using a combined irrigation and drainage technique and provide a theoretical basis for the improvement of saline alkali land in Xinjiang, we used a test pit experiment to test soil moisture, salinity, soil pH, permeability, cotton agronomic characteristics, cotton yield and quality, and water use efficiency in three soil textures (clay, loam, sand soil) under the combined irrigation and drainage (T1) and conventional drip irrigation (T2). We measured the soil moisture content in different soil layers of clay, loam and sandy soil under the T1 and T2 treatments. Clay and loam had better water retention than sandy soil, and the soil moisture under the combined irrigation and drainage treatment was slightly higher than that under conventional drip irrigation. Under T1, the average salt content and pH value in the 0–60 cm soil layer of clay, loam and sandy soil decreased by 14.09%, 14.21% and 12.35%, and 5.02%, 5.85% and 3.27%, respectively, compared with T2. Therefore, T2 reduced the salt content and pH value of shallow soil. Under T1 and T2, the relative permeability coefficient (K/K0) values in different soil textures at different growth stages of cotton were ranked as follows: sandy soil > loam > clay. Under T1, the K/K0 values for different soil textures at different growth stages of cotton were >1; therefore, T1 improved soil permeability. The yield and water use efficiency of seed cotton under T1 and T2 in different soil textures were ranked as follows: loam > clay > sand, and there were significant differences between the different treatments. In loam, the cotton yield and water use efficiency of the combined irrigation and drainage treatment were 6.37% and 13.70% higher than those for conventional drip irrigation treatment, respectively. By combining irrigation and drainage to adjust the soil moisture, salt, pH value and soil permeability of different soil textures, the root growth environment of crops can effectively be improved, which is of great significance to improving the utilization efficiency of water and fertilizer and promoting the growth of cotton.


Author(s):  
Ankush . ◽  
S.K. Sharma

An experiment was carried out to study the impact of drip fertigation in tomato crop at RCA, MPUAT, Udaipur during rabi season 2015-16 in split plot designed with three irrigation schedules [100 (I1), 75 (I2) and 50% PE (I3) through drip] and five fertilization schedules [100% RDF (F1), 75% RDF (F2), 75% RDF + 2 foliar spray of 1% urea phosphate (F3), 50% RDF (F4), 50% RDF + 2 foliar spray of 1% urea phosphate (F5)]. Higher number of nodes per plant (21.20 and 19.89) and yield (169.03 and 186.38 q/ha) were registered with treatments receiving drip irrigation at 75% PE and 75% RDF through fertigation + 2 foliar spray of 1% urea phosphate, respectively. Quality characteristics were enhanced with combined use of I2F3 treatment. The highest water use efficiency i.e. 26.37 ka/ha-cm was recorded under I3F3 treatment and fertilizer use efficiency with I2F5 treatment combination (165.78, 254.31 and 381.46 kg/kg NPK, respectively). 


Sign in / Sign up

Export Citation Format

Share Document