Yield, quality, nutrient and water use efficiency of tomato as affected by different fertigation rates through drip irrigation system

Author(s):  
Ankush . ◽  
S.K. Sharma

An experiment was carried out to study the impact of drip fertigation in tomato crop at RCA, MPUAT, Udaipur during rabi season 2015-16 in split plot designed with three irrigation schedules [100 (I1), 75 (I2) and 50% PE (I3) through drip] and five fertilization schedules [100% RDF (F1), 75% RDF (F2), 75% RDF + 2 foliar spray of 1% urea phosphate (F3), 50% RDF (F4), 50% RDF + 2 foliar spray of 1% urea phosphate (F5)]. Higher number of nodes per plant (21.20 and 19.89) and yield (169.03 and 186.38 q/ha) were registered with treatments receiving drip irrigation at 75% PE and 75% RDF through fertigation + 2 foliar spray of 1% urea phosphate, respectively. Quality characteristics were enhanced with combined use of I2F3 treatment. The highest water use efficiency i.e. 26.37 ka/ha-cm was recorded under I3F3 treatment and fertilizer use efficiency with I2F5 treatment combination (165.78, 254.31 and 381.46 kg/kg NPK, respectively). 

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 988B-988
Author(s):  
Lincoln Zotarelli ◽  
Johannes Scholberg ◽  
Michael Dukes ◽  
Hannah Snyder ◽  
Eric Simonne ◽  
...  

On sandy soils, potential N contamination of groundwater resources associated with intensively managed vegetables may hamper the sustainability of these systems. The objective of this study was to evaluate the interaction between irrigation system design/scheduling and N fertilization rates on zucchini production and potential N leaching. Zucchini was planted during Fall 2005 using three N fertilizer rates (73, 145, 217 kg/ha) and four different irrigation approaches. Irrigation scheduling included surface-applied drip irrigation and fertigation: SUR1 (141 mm applied) and SUR2 (266 mm) using irrigation control system (QIC) that allowed time-based irrigation (up to five events per day) and a threshold setting of 13% and 15% volumetric water content (VWC), respectively; Subsurface drip irrigation (SDI) using a QIC setting of 10% VWC (116 mm) combined with surface applied fertigation; and a control treatment with irrigation applied once daily (424 mm). Leacheate volumes were measured by drainage lysimeters. Nitrate leaching increased with irrigation rate and N rate and measured values ranged from 4 to 42 kg N/ha. Use of SDI greatly reduced nitrate leaching compared to other treatments. SDI and SUR1 treatments had no effect on yields (29 Mg/ha). However, SDI had a 15% and 479% higher water use efficiency (WUE) compared to SUR1 and the fixed irrigation duration treatment. Application of N in excess of intermediate N-rate (standard recommendation) did not increase yield but yield was reduced at the lowest N-rate. It is concluded that combining sensor-based SDI with surface applied fertigation resulted similar or higher yields while it reduced both water use and potential N leaching because of improved nutrient retention in the active root zone.


Crop Science ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 2806-2819 ◽  
Author(s):  
Baoyuan Zhou ◽  
Di Ma ◽  
Xuefang Sun ◽  
Zaisong Ding ◽  
Congfeng Li ◽  
...  

Author(s):  
R. Suvitha ◽  
A. Velayutham ◽  
V. Geethalakshmi ◽  
S. Panneerselvam ◽  
P. Jeyakumar ◽  
...  

Field experiment was conducted to evaluate the performance of different automated drip irrigation on tomato crop under sandy clay loam soil in Tamil Nadu Agricultural University during kharif 2019 and kharif 2020. Five treatments comprising 4 different automated drip irrigation systems are time based drip irrigation, volume based drip irrigation, soil moisture sensor based irrigation, switching tensiometer based irrigation and one is conventional method of irrigation were tested. The results revealed that tensiometer based drip irrigation recorded higher fruit yield of 95.11 and 96.21 t ha-1 and water use efficiency of 21.10 and 25.42 t ha-mm-1 resulting in increment over conventional method of irrigation. However, the above treatment was followed by soil moisture sensor based drip irrigation in tomato. Tensiometer based drip irrigation helps to save the water up to 54.91 and 60.55 % compared to conventional method of irrigation during kharif 2019 and 2020.


Sign in / Sign up

Export Citation Format

Share Document