Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis

2020 ◽  
Vol 229 ◽  
pp. 105934 ◽  
Author(s):  
Linlin Wang ◽  
Qiang Li ◽  
Jeffrey A. Coulter ◽  
Junhong Xie ◽  
Zhuzhu Luo ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154673 ◽  
Author(s):  
Chengyue Bian ◽  
Changjian Ma ◽  
Xinhui Liu ◽  
Chao Gao ◽  
Quanru Liu ◽  
...  

2018 ◽  
Vol 206 ◽  
pp. 95-101 ◽  
Author(s):  
Jun Wang ◽  
Rajan Ghimire ◽  
Xin Fu ◽  
Upendra M. Sainju ◽  
Wenzhao Liu

2013 ◽  
Vol 153 (1) ◽  
pp. 90-101 ◽  
Author(s):  
X. B. Zhou ◽  
Y. H. Chen ◽  
Z. Ouyang

SUMMARYProductivity and water resource usage efficiency are crucial issues in sustainable agriculture. The aims of the present research were to compare and evaluate the soil moisture content (SMC), evapotranspiration (ETa), yield, water-use efficiency (WUE), and net return of winter wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merr.] under different plant population distribution patterns and to identify the possible ways to improve water utilization. Using the same plant population for a given crop, the experiments consisted of four spacings between rows (row spacings) for winter wheat (cvar Shannong 919) under both rainfed and irrigated conditions and five row spacings for summer soybean (cvar Ludou 4) under rainfed conditions. For winter wheat, the stem number with row spacing of 49 cm was the lowest in all treatments. The SMC was enhanced by irrigation, particularly at the 10–40 cm depth. The yield and WUE were negatively correlated with row spacing and were greater with narrower row spacing than with wider rows. For soybean, SMC in uniform distribution (spacing between plants) treatments was greater at lower depths than at shallower depths for each row spacing treatment. A high yield, WUE and net return of winter wheat and soybean can be achieved with narrower row spacing. Combining winter wheat row spacing of 14 cm with soybean row spacing of 18 cm and soybean row spacing of 27 cm is a highly suitable planting system for the plains of Northern China.


2018 ◽  
Vol 69 (12) ◽  
pp. 1197
Author(s):  
Zhang Mingming ◽  
Dong Baodi ◽  
Qiao Yunzhou ◽  
Yang Hong ◽  
Wang Yakai ◽  
...  

Water shortage is a limiting factor to crop production in North China. Mulching is a widely used approach to conserve soil water and improve crop yield. A 2-year field experiment was conducted at the Nanpi Eco-Agricultural Experimental Station of the Chinese Academy of Sciences in 2014–16, in which yields of winter wheat (Triticum aestivum L.) in a treatment with subsoil plastic film mulch were compared with non-mulch. The mulch treatment produced a 16.1% higher grain yield than the non-mulch treatment. The increase in grain yield was primarily due to a 10.1–10.9% increase in number of spikes per m2 and a 4.7–5.1% increase in number of grains per spike. Plants in the mulch treatment showed greater dry matter (DM) accumulation but similar harvest index. Yield improvement did not depend on increasing DM translocation, but was significantly related to DM accumulation at different growth stages. Increased DM accumulation before wintering, from jointing to heading and from anthesis to maturity, enhanced grain yield by promoting increased number of spikes and number of grains per spike. Soil evaporation was lower by 31.1% and transpiration increased by 28.0% in the mulch treatment, resulting in 8.9–9.4% higher water-use efficiency. Our results indicate that a subsoil plastic film mulch can effectively improve winter wheat yield and water-use efficiency under rain-fed conditions.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193895 ◽  
Author(s):  
Xuexin Xu ◽  
Yinghua Zhang ◽  
Jinpeng Li ◽  
Meng Zhang ◽  
Xiaonan Zhou ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0180205 ◽  
Author(s):  
Linlin Wang ◽  
Shiwen Wang ◽  
Wei Chen ◽  
Hongbing Li ◽  
Xiping Deng

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10967
Author(s):  
Erastus Mak-Mensah ◽  
Peter Bilson Obour ◽  
Eunice Essel ◽  
Qi Wang ◽  
John K. Ahiakpa

Background China is the leading consumer of plastic film worldwide. Plastic film mulched ridge-furrow is one of the most widely adopted agronomic and field management practices in rain-fed agriculture in dry-land areas of China. The efficiency of plastic film mulching as a viable method to decrease evapotranspiration (ET), increase crop yields, and water use efficiency (WUE), has been demonstrated extensively by earlier studies. Methods A comprehensive evaluation of how co-application of plastic-film mulch and biochar in different agro-environments under varying climatic conditions influence ET, crop yield, WUE, and soil microbial activity were assessed. We performed a meta-analysis using the PRISMA guideline to assess the effect of plastic-film mulched ridge-furrow and biochar on ET, yield, and WUE of wheat (Triticum aestivum L.), potato (Solanum tuberosum L.), and maize (Zea mays L.) in northern China. Results The use of plastic film increased average yields of wheat (75.7%), potato (20.2%), and maize (12.9%) in Gansu, Ningxia, Shaanxi, and Shanxi provinces, respectively due to the reduction in ET by 12.8% in Gansu, 0.5% in Ningxia, and 4.1% in Shanxi, but increased in Shaanxi by 0.5% compared to no-mulching. These changes may be attributed to the effect of plastic film mulch application which simultaneously increased WUE by 68.5% in Gansu, 23.9% in Ningxia, 16.2% in Shaanxi, and 12.8% in Shanxi, respectively. Compared to flat planting without mulching, in three years, the yield of maize increased with the co-application of plastic film and biochar by 22.86% in the Shanxi and Shaanxi regions. Conclusion Our analysis revealed co-application of plastic film with biochar is integral for improving soil and water conservation in rain-fed agriculture and as an integrated practice to avert drought while simultaneously mitigating runoff and erosion.


Sign in / Sign up

Export Citation Format

Share Document