Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities

2020 ◽  
Vol 238 ◽  
pp. 106230
Author(s):  
Maryam Khozaei ◽  
Ali Akbar Kamgar Haghighi ◽  
Shahrokh Zand Parsa ◽  
Ali Reza Sepaskhah ◽  
Fatemeh Razzaghi ◽  
...  
2011 ◽  
Vol 37 (10) ◽  
pp. 1809-1818
Author(s):  
Zi-Chang ZHANG ◽  
Hong-Wei LI ◽  
Xue-Ming WANG ◽  
Li-Min YUAN ◽  
Zhi-Qin WANG ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


2021 ◽  
Author(s):  
Fathia El Mokh ◽  
Kamel Nagaz ◽  
Ashok Kumar Alva ◽  
Mohamed Moncef Masmoudi ◽  
Netij Ben Mechlia

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 806
Author(s):  
Ali A. A. Mekdad ◽  
Mostafa M. Rady ◽  
Esmat F. Ali ◽  
Fahmy A. S. Hassan

Field trials for two seasons (2018/2019 and 2019/2020) were conducted to investigate the influence of the addition of three levels of potassium (K) (K1 = 60, K2 = 120, and K3 = 180 kg K2O ha−1) and/or sulfur (S) (S1 = 175, S2 = 350, and S3 = 525 kg CaSO4 ha−1) to the soil, as well as the sowing date (the 1st of September, D1; or the 1st of October, D2) on the potential improvement of physiology, growth, and yield, as well as the quality characteristics of sugar beet yield under soil salinity conditions. With three replicates specified for each treatment, each trial was planned according to a split-split plot in a randomized complete block design. The results revealed that early sowing (D1) led to significant improvements in all traits of plant physiology and growth, in addition to root, top, and biological yields and their quality, gross and pure sugar, and K- and S-use efficiencies based on root yield (R-KUE and R-SUE). The K3 level (180 kg K2O ha−1) positively affected the traits of plant physiology, growth, yield and quality, and R-SUE, and reduced the attributes of impurities, impurity index, and R-KUE. Additionally, the S3 level (525 kg CaSO4 ha−1) affirmatively affected plant physiology, growth, yield and quality traits, and R-KUE, and decreased impurity traits, impurity index, and R-SUE. The interaction of D1 × K3 × S3 maximized the yield of roots (104–105 ton ha−1) and pure sugar (21–22 ton ha−1). Path coefficient analysis showed that root yield and pure sugar content had positive direct effects with 0.62 and 0.65, and 0.38 and 0.38 in both studied seasons, respectively, on pure sugar yield. Significant (p ≤ 0.01) positive correlations were found between pure sugar yield and root yield (r = 0.966 ** and 0.958 **). The study results recommend the use of the integrative D1 × K3 × S3 treatment for sugar beet to obtain maximum yields and qualities under salt stress (e.g., 8.96 dS m−1) in dry environments.


1991 ◽  
Vol 167 (3) ◽  
pp. 155-158 ◽  
Author(s):  
K. S. Subramanian ◽  
G. Selvakumari ◽  
K. V. Selvaraj ◽  
K. N. Chinnaswami

2021 ◽  
Vol 271 ◽  
pp. 108266
Author(s):  
Reza Deihimfard ◽  
Sajjad Rahimi-Moghaddam ◽  
Jan Goudriaan ◽  
Abdolmajid Mahdavi Damghani ◽  
Omid Noori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document