Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency

2021 ◽  
Vol 243 ◽  
pp. 106421
Author(s):  
Dionei Lima Santos ◽  
Eugênio Ferreira Coelho ◽  
Fernando França da Cunha ◽  
Sérgio Luiz Rodrigues Donato ◽  
Wallace de Paula Bernado ◽  
...  
2016 ◽  
Vol 29 (1) ◽  
pp. 173-182 ◽  
Author(s):  
MARCELO ROCHA DOS SANTOS ◽  
SÉRGIO LUIZ RODRIGUES DONATO ◽  
EUGÊNIO FERREIRA COELHO ◽  
PAULO ROBERTO FERNANDES COTRIM JUNIOR ◽  
IGOR NOGUEIRA DE CASTRO

ABSTRACT: The objective of this work was to evaluate the gas exchange, leaf temperature, yield and water use efficiency in 'Tommy Atkins' mango under irrigation deficit strategies. The experimental design was randomized block, with seven treatments with regulated deficit irrigation (RDI) under micro-spray and five treatments with partial root-zone drying (PRD) under drip irrigation. The treatments on RDI consisted of application of 100, 75 and 50% of ETc at the stages S1 (beginning of flowering to fruit set) S2 (fruit development) and S3 (fruit physiological maturation). The treatments on PRD consisted of application of 100, 80, 60 and 40% of ETc, in the same three stages, alternating the irrigation side every 15 days. The regulated deficit irrigation causes less negative interference in gas exchange than the partial root-zone drying, and the climate factors affect the gas exchange and leaf temperature of 'Tommy Atkins' mango more than the regulated deficit irrigation. The partial root-zone drying irrigation with 60 and 40% of ETc causes a decrease in the 'Tommy Atkins' mango yield. The regulated deficit irrigation up to 50% of ETc, applied at the fruit maturation stage, maintain the yield and water use efficiency.


2008 ◽  
Vol 95 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Taisheng Du ◽  
Shaozhong Kang ◽  
Jianhua Zhang ◽  
Fusheng Li ◽  
Boyuan Yan

Oecologia ◽  
1983 ◽  
Vol 59 (2-3) ◽  
pp. 178-184 ◽  
Author(s):  
M. M. Caldwell ◽  
T. J. Dean ◽  
R. S. Nowak ◽  
R. S. Dzurec ◽  
J. H. Richards

2016 ◽  
Vol 44 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Bianca do Carmo SILVA ◽  
Pêola Reis de SOUZA ◽  
Daihany Moraes CALLEGARI ◽  
Vanessa Ferreira ALVES ◽  
Allan Klynger da Silva LOBATO ◽  
...  

Boron (B) is a very important nutrient required by forest plants; when supplied in adequate amounts, plants can ameliorate the negative effects of abiotic stresses. The objective of this study was to (i) investigate gas exchange, (ii) measure oxidant and antioxidant compounds, and (iii) respond how B supply acts on tolerance mechanism to water deficit in young Schizolobium parahyba plants. The experiment employed a factorial that was entirely randomised, with two boron levels (25 and 250 µmol L-1, simulating conditions of sufficient B and high B, respectively) and two water conditions (control and water deficit). Water deficit induced negative modifications on net photosynthetic rate, stomatal conductance and water use efficiency, while B high promoted intensification of the effects on stomatal conductance and water use efficiency. Hydrogen peroxide and electrolyte leakage of both tissues suffered non-significant increases after B high and when applied water deficit. Ascorbate levels presented increases after water deficit and B high to leaf and root. Our results suggested that the tolerance mechanism to water deficit in young Schizolobium parahyba plants is coupled to increases in total glutathione and ascorbate aiming to control the overproduction of hydrogen peroxide and alleviates the negative consequences on electrolyte leakage and gas exchange. In relation to B supply, this study proved that sufficient level promoted better responses under control and water deficit conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


Sign in / Sign up

Export Citation Format

Share Document