Concurrent variability of soil moisture and apparent electrical conductivity in the proximity of olive trees

2021 ◽  
Vol 245 ◽  
pp. 106652
Author(s):  
Gonzalo Martínez ◽  
Ana M. Laguna ◽  
Juan Vicente Giráldez ◽  
Karl Vanderlinden
2017 ◽  
Vol 16 (10) ◽  
pp. vzj2016.12.0129 ◽  
Author(s):  
Edoardo Martini ◽  
Ute Wollschläger ◽  
Andreas Musolff ◽  
Ulrike Werban ◽  
Steffen Zacharias

2013 ◽  
Vol 61 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Viliam Nagy ◽  
Gábor Milics ◽  
Norbert Smuk ◽  
Attila József Kovács ◽  
István Balla ◽  
...  

Abstract A soil moisture content map is important for providing information about the distribution of moisture in a given area. Moisture content directly influences agricultural yield thus it is crucial to have accurate and reliable information about moisture distribution and content in the field. Since soil is a porous medium modified generalized Archie’s equation provides the basic formula to calculate moisture content data based on measured ECa. In this study we aimed to find a more accurate and cost effective method for measuring moisture content than manual field sampling. Locations of 25 sampling points were chosen from our research field as a reference. We assumed that soil moisture content could be calculated by measuring apparent electrical conductivity (ECa) using the Veris-3100 on-the-go soil mapping tool. Statistical analysis was carried out on the 10.791 ECa raw data in order to filter the outliers. The applied statistical method was ±1.5 interquartile (IRQ) distance approach. The visualization of soil moisture distribution within the experimental field was carried out by means of ArcGIS/ArcMAP using the inverse distance weighting interpolation method. In the investigated 25 sampling points, coefficient of determination between calculated volumetric moisture content data and measured ECa was R2 = 0.87. According to our results, volumetric moisture content can be mapped by applying ECa measurements in these particular soil types.


2005 ◽  
Vol 6 (3) ◽  
pp. 297-311 ◽  
Author(s):  
K. F. Bronson ◽  
J. D. Booker ◽  
S. J. Officer ◽  
R. J. Lascano ◽  
S. J. Maas ◽  
...  

2021 ◽  
Vol 64 (1) ◽  
pp. 287-298
Author(s):  
Ruixiu Sui ◽  
Jonnie Baggard

HighlightsWe developed and evaluated a variable-rate irrigation (VRI) management method for five crop years in the Mississippi Delta.VRI management significantly reduced irrigation water use in comparison with uniform-rate irrigation (URI). There was no significant difference in grain yield and irrigation water productivity between VRI and URI management.Soil apparent electrical conductivity (ECa) was used to delineate irrigation management zones and generate VRI prescriptions.Sensor-measured soil water content was used in irrigation scheduling.Abstract. Variable-rate irrigation (VRI) allows producers to site-specifically apply irrigation water at variable rates within a field to account for the temporal and spatial variability in soil and plant characteristics. Developing practical VRI methods and documenting the benefits of VRI application are critical to accelerate the adoption of VRI technologies. Using apparent soil electrical conductivity (ECa) and soil moisture sensors, a VRI method was developed and evaluated with corn and soybean for five crop years in the Mississippi Delta. Soil ECa of the study fields was mapped and used to delineate VRI management zones and create VRI prescriptions. Irrigation was scheduled using soil volumetric water content measured by soil moisture sensors. A center pivot VRI system was employed to deliver irrigation water according to the VRI prescription. Grain yield, irrigation water use, and irrigation water productivity in the VRI treatment were determined and compared with that in a uniform-rate irrigation (URI) treatment. Results showed that the grain yield and irrigation water productivity between the VRI and URI treatments were not statistically different with both corn and soybean crops. The VRI management significantly reduced the amount of irrigation water by 22% in corn and by 11% in soybean (p = 0.05). Adoption of VRI management could improve irrigation water use efficiency in the Mississippi Delta. Keywords: Soil electrical conductivity, Soil moisture sensor, Variable rate irrigation, Water management.


Irriga ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 1-15
Author(s):  
Iug Lopes ◽  
Abelardo A. A. Montenegro

SPACE DEPENDENCE OF SOIL MOISTURE AND SOIL ELECTRICAL CONDUCTIVITY IN ALUVIAL REGION1     IUG LOPES2 E ABELARDO ANTONIO DE ASSUNÇÃO MONTENEGRO3   1Paper extracted from the doctoral thesis of the first author. 2Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia Baiano, BR 349, Km 14 - Zona Rural, CEP: 47600-000, Bom Jesus da Lapa - BA, Brazil; [email protected] - ORCID: 0000-0003-0592-4774. 3Department of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Dois Irmão, CEP: 52171-900, Recife - PE, Brazil; [email protected] -ORCID: 0000-0002-5746-8574.     1 ABSTRACT   Spatial information on soil characteristics is essential to proper decision-making regarding to the environment and land use management. The objective of this work was the investigation of cross - variance between soil moisture and apparent soil electrical conductivity (CEa), under different land uses in an alluvial valley of Pernambuco. The study was developed at the Advanced Research Unit of Universidade Federal Rural de Pernambuco (UFRPE), located at  Brígida River Basin, municipality of Panamirim-PE. Soil samples were collected in a regular mesh of 20 x 10 m, for soil moisture by gravimetric method and, following a regular 10 x 10 m mesh, CEa measurements were performed using EM38® device. Cross-semivariograms were assessed and spatial dependence was verified by geostatistical procedures. It was verified in geostatistical procedures  low variation for soil moisture and intermediate variation for CEa. The use of geostatistics allowed identification of covariance between soil moisture and ECa, as well as spatial dependence for both variables, for agricultural areas. It was verified that soil moisture, even at levels close to residual, constitutes a relevant secondary component for increasing soil salinity maps precision, and hence to precision agriculture.   Keywords: geostatistics, semi-arid, precision agriculture     LOPES, I. E MONTENEGRO, A. A. DE A. DEPENDÊNCIA ESPACIAL DA UMIDADE DO SOLO E CONDUTIVIDADE ELÉTRICA EM REGIÃO ALUVIAL     2 RESUMO   Informações espaciais sobre as características do solo são essenciais para uma tomada de decisão adequada em relação ao meio ambiente e ao gerenciamento do uso do solo. O objetivo deste trabalho foi investigar a variância cruzada entre a umidade do solo e a condutividade elétrica aparente do solo (CEa), sob diferentes usos do solo em um vale aluvial de Pernambuco. O estudo foi desenvolvido na Unidade de Pesquisa Avançada da Universidade Federal Rural de Pernambuco (UFRPE), localizada na bacia do rio Brígida, município de Panamirim-PE. As amostras de solo foram coletadas em uma malha regular de 20 x 10 m, para a umidade do solo pelo método gravimétrico e, seguindo uma malha regular de 10 x 10 m, as medidas de CEa foram realizadas usando o dispositivo EM38®. Os semivariogramas cruzados foram avaliados e a dependência espacial foi verificada por procedimentos geoestatísticos. Verificou-se procedimentos geoestatísticos, uma baixa variação da umidade do solo e variação intermediária para CEa. O uso da geoestatística permitiu identificar a covariância entre a umidade do solo e o CEa, bem como a dependência espacial para ambas as variáveis, para as áreas agrícolas. Verificou-se que a umidade do solo, mesmo em níveis próximos ao residual, constitui um componente secundário relevante para o aumento da precisão do mapeamento da salinidade do solo e, consequentemente, para a agricultura de precisão.   Palavras-chave: geoestatística, semiárido, agricultura de precisão


2005 ◽  
Vol 46 (1-3) ◽  
pp. 263-283 ◽  
Author(s):  
K.A. Sudduth ◽  
N.R. Kitchen ◽  
W.J. Wiebold ◽  
W.D. Batchelor ◽  
G.A. Bollero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document