Estimation of CI-based Soil Compaction Status from Soil Apparent Electrical Conductivity

2014 ◽  
Author(s):  
Eduardo Leonel Bottega ◽  
Eder Luís Sari ◽  
Zanandra Boff de Oliveira ◽  
Alberto Eduardo Knies

Based on the measurement of soil penetration resistance (PR), it is possible to identify compacted soil layers, where root growth may be harmed, affecting crop development and yield. The objective of this work was to analyze the use of management zones (MZ), delimited on the basis of mapping of the spatial variability of the soil apparent electrical conductivity (ECa), in the differentiation of soil compaction levels. The work was carried out in a 25.8-ha no-tillage area, cultivated under a center pivot. The ECa was measured under two soil moisture conditions (13.7 and 16.45%), using the Terram® equipment. Soil penetration resistance (PR) was measured using the SoloStar PLG5500 penetrograph. Based on the spatial variability ECa mapping, management zones (2, 3, and 4 zones) were delimited. The mean PR values ??of each MZ were compared by the t-test of means. It was possible to differentiate mean values ??of penetration resistance (PR), which vary from 0.9 to 2.10 MPa, from the characterization of management classes generated on the basis of the ECa spatial variability. The highest stratification of PR values ??was obtained as a function of sampling directed at delimited management zones when the soil had lower moisture content (13.7%). The highest mean PR values ??were obtained for the split of the ECa map into at least three classes. It was identified that for the study area there is no need to perform any mechanical decompaction operation.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Katarzyna Pentoś ◽  
Krzysztof Pieczarka ◽  
Kamil Serwata

Soil spatial variability mapping allows the delimitation of the number of soil samples investigated to describe agricultural areas; it is crucial in precision agriculture. Electrical soil parameters are promising factors for the delimitation of management zones. One of the soil parameters that affects yield is soil compaction. The objective of this work was to indicate electrical parameters useful for the delimitation of management zones connected with soil compaction. For this purpose, the measurement of apparent soil electrical conductivity and magnetic susceptibility was conducted at two depths: 0.5 and 1 m. Soil compaction was measured for a soil layer at 0–0.5 m. Relationships between electrical soil parameters and soil compaction were modelled with the use of two types of neural networks—multilayer perceptron (MLP) and radial basis function (RBF). Better prediction quality was observed for RBF models. It can be stated that in the mathematical model, the apparent soil electrical conductivity affects soil compaction significantly more than magnetic susceptibility. However, magnetic susceptibility gives additional information about soil properties, and therefore, both electrical parameters should be used simultaneously for the delimitation of management zones.


2005 ◽  
Vol 6 (3) ◽  
pp. 297-311 ◽  
Author(s):  
K. F. Bronson ◽  
J. D. Booker ◽  
S. J. Officer ◽  
R. J. Lascano ◽  
S. J. Maas ◽  
...  

2020 ◽  
Vol 23 (1) ◽  
pp. 1-6
Author(s):  
Jana Galambošová ◽  
Miroslav Macák ◽  
Vladimír Rataj ◽  
Marek Barát ◽  
Paula Misiewicz

AbstractIncrease in machinery size and its random traffic at fields cause soil compaction resulting in damage of soil structure and degradation of soil functions. Nowadays, rapid methods to detect soil compaction at fields are of high interest, especially proximal sensing methods such as electrical conductivity measurements. The aim of this work was to investigate whether electromagnetic induction (EMI) could be used to determine trafficked areas in silty clay soil. Results of randomized block experiment showed a high significant difference (p <0.01) in EMI data measured between compacted and non-compacted areas. EMI readings from compacted areas were, on average, 11% (shallow range) and 9% (deep range) higher than non-compacted areas, respectively. This difference was determined in both shallow and deep measuring ranges, indicating that the difference in soil compaction was detected in both topsoil and subsoil. Furthermore, the data was found to have a significant spatial variability, suggesting that, in order to detect the increase in EMI (which shows the increase in soil compaction), data within close surrounding area should be included in the analyses. Correlation coefficient of EMI and penetration resistance (average moisture content 32.5% and 30.8% for topsoil and subsoil) was found to be 0.66.


2005 ◽  
Vol 46 (1-3) ◽  
pp. 263-283 ◽  
Author(s):  
K.A. Sudduth ◽  
N.R. Kitchen ◽  
W.J. Wiebold ◽  
W.D. Batchelor ◽  
G.A. Bollero ◽  
...  

2018 ◽  
Vol 31 (2) ◽  
pp. 434-445
Author(s):  
JUCICLÉIA SOARES DA SILVA ◽  
ÊNIO FARIAS DE FRANÇA E SILVA ◽  
GLÉCIO MACHADO SIQUEIRA ◽  
GERÔNIMO FERREIRA DA SILVA ◽  
DIEGO HENRIQUE SILVA DE SOUZA

ABSTRACT Spatial variability of soil attributes affects crop development. Thus, information on its variability assists in soil and plant integrated management systems. The objective of this study was to assess the spatial variability of the soil apparent electrical conductivity (ECa), electrical conductivity of the saturation extract (ECse), water content in the soil (θ) and soil texture (clay, silt and sand) of a sugarcane crop area in the State of Pernambuco, Brazil. The study area had about 6.5 ha and its soil was classified as orthic Humiluvic Spodosol. Ninety soil samples were randomly collected and evaluated. The attributes assessed were soil apparent electrical conductivity (ECa) measured by electromagnetic induction with vertical dipole (ECa-V) in the soil layer 0.0.4 and horizontal dipole (ECa-H) in the soil layer 0.0-1.5 m; and ECse, θ and texture in the soil layers 0.0-0.2 m and 0.2-0.4 m. Spatial variability of the ECa was affected by the area relief, and had no direct correlation with the electrical conductivity of the saturation extract (ECse). The results showed overestimated mean frequency distribution, with means distant from the mode and median. The area relief affected the spatial variability maps of ECa-V, ECa-H, ECse and θ, however, the correlation matrix did not show a well-defined cause-and-effect relationship. Spatial variability of texture attributes (clay, site and sand) was high, presenting pure nugget effect.


Sign in / Sign up

Export Citation Format

Share Document