Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation

2021 ◽  
Vol 249 ◽  
pp. 106812
Author(s):  
Ahmed Attia ◽  
Salah El-Hendawy ◽  
Nasser Al-Suhaibani ◽  
Majed Alotaibi ◽  
Muhammad Usman Tahir ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sisay Ambachew Mekonnen ◽  
Assefa Sintayehu

Sesame (Sesamum indicum L.) is the leading oil seed crop produced in Ethiopia. It is the second most important agricultural commodity for export market in the country. It is well suited as an alternative crop production system, and it has low crop water requirement with moderate resistance to soil moisture deficit. The low land of North Western Ethiopia is the major sesame producer in the country, and the entire production is from rainfed. The rainfall distribution in North Western Ethiopia is significantly varied. This significant rainfall variability hampers the productivity of sesame. Irrigation agriculture has the potential to stabilize crop production and mitigate the negative impacts of variable rainfall. This study was proposed to identify critical growth stages during which sesame is most vulnerable to soil moisture deficit and to evaluate the crop water productivity of sesame under deficit irrigation. The performance of sesame to stage-wise and uniform deficit irrigation scheduling technique was tested at Gondar Agricultural Research Center (Metema Station), Northern Western Ethiopia. Eight treatments, four stage-wise deficit, two uniform deficit, one above optimal, and one optimal irrigation applications, were evaluated during the 2017 irrigation season. The experiment was designed as a randomized complete block design with three replications. Plant phenological variables, grain yield and crop water productivity, were used for performance evaluation. The result showed that deficit irrigation can be applied both throughout and at selected growth stages except the midseason stage. Imposing deficit during the midseason gave the lowest yield indicating the severe effect of water deficit during flowering and capsule initiation stages. When deficit irrigation is induced throughout, a 25% uniform deficit irrigation can give the highest crop water productivity with no or little yield reduction as compared with optimal irrigation. Implementing deficit irrigation scheduling technique will be beneficial for sesame production. Imposing 75% deficit at the initial, development, late season growth stages or 25% deficit irrigation throughout whole seasons will improve sesame crop water productivity.


Author(s):  
Morteza Goldani ◽  
Mohammad Bannayan ◽  
Fatemeh Yaghoubi

Abstract This two-year study aimed to determine the most appropriate irrigation scheduling and crop water productivity (CWP) of basil plant under controlled conditions in Ferdowsi University of Mashhad, Iran. The experimental layout was a split-plot design with three replications. Three deficit irrigation (DI) levels (DI0: 100%, DI30: 70% and DI60: 40% of the field capacity) and two basil cultivars (Green and Purple) were applied to main and subplots, respectively. The results showed that there was a decrease in yield and an increase in CWP for fresh leaves and fresh and dry herb by decreasing the irrigation water. However, a significant difference between fresh leaves and fresh and dry herb yield of DI0 and DI30 treatment was not observed. The Green basil had higher leaves and herb yield and CWP than other cultivar. A polynomial relationship was stablished between fresh leaves yield and crop evapotranspiration, however the yield response factor (Ky) indicated a linear relationship between the relative reduction in crop evapotranspiration vs. the relative reduction in yield. The Ky values were obtained as 0.70 and 0.76 for Green and Purple basil, respectively. The results revealed that the irrigation regime of 30% water saving could insure acceptable yield of basil plant and increase in CWP, especially for the Green basil cultivar.


2021 ◽  
Vol 42 (4) ◽  
pp. 1062-1069
Author(s):  
P.K. Sahu ◽  
◽  
A.P. Sahu ◽  
P.S. Brahmanand ◽  
B. Panigrahi ◽  
...  

Aim: To study the effect of deficit irrigation on yield and water productivity of sunflower in East and South eastern coastal plains of Odisha. Methodology: The present study on water productivity was undertaken using hybrid sunflower (Swathi: NSFH-145) with application of deficit irrigation having Management Allowable Deficit level of 20%, 40%, 60% and one farmers’ practice of 70% MAD level of irrigation. Growth attributes like leaf area Index, plant height, and head diameter were recorded at 20, 45, 65 and 80 days after sowing. Yield attributes like 1000 seed weight (test weight), above ground biomass and grain yield, were recorded after threshing. Results: The growth, yield and water productivity of sunflower were significantly influenced by different irrigation levels. Irrigation scheduling at 20% MAD level showed the highest grain yield, while the lowest yield was obtained from the farmers’ practice. Irrigation at 60% MAD level showed the highest water productivity when compared with farmer’s practice as it produced the highest yield per unit quantity of water application of 0.85 kg m-3 and also produced the highest average benefit to cost ratio of 2.08. Interpretation: Taking the yield, water productivity and benefit-cost ratio into account, irrigation at 60% MAD level was found to be the best. However, irrigation at 50% to 60% MAD level may be suggested for growing sunflower under water scarce conditions in sandy loam soil for increasing water productivity.


2020 ◽  
Author(s):  
Jorge Alvar

<p>Quinoa’s resilience to drought stress conditions makes the crop suitable for the Sahel. It can support grain production during the dry season and can be considered an alternative crop for alleviating food insecurity within the region. The modelling of quinoa in new environments, beyond its origin, is required given its rapid worldwide expansion. Crop water models are of interest as pressure on water resources is growing and irrigation scheduling is portrayed as the best option for water optimisation. The AquaCrop model is used to simulate crop’s development and derives optimal frequencies and net applications of irrigation. Due to limited water resources in the region, different irrigation schedules (i.e. full irrigation (FI), progressive drought (PD), deficit irrigation (DI) and extreme deficit irrigation (EDI)) are proposed for analysing yield and biomass responses to water stress conditions. Quinoa yields are stabilised under PD, thereby prioritising maximum water productivity rather than maximum yields. When comparing to FI, PD simulations show a 13 % yield reduction (0.97 Mg ha<sup>-1</sup> for FI vs. 0.85 Mg ha<sup>-1</sup> for PD), but water savings are as much as 25 % (415 mm for FI vs. 307 mm for PD). Water optimisation is reached by watering less (310 mm) but with more frequent irrigation events (28 rather than 20). The accuracy of model’s simulations, as normalised-root-mean-square-error (NRMSE), is of 13.1 % for biomass and 13.6 % for grain yield (average of calibration and validation treatments).</p>


2020 ◽  
Vol 12 (23) ◽  
pp. 9819
Author(s):  
Abdelraouf R. E. ◽  
H. G. Ghanem ◽  
Najat A. Bukhari ◽  
Mohamed El-Zaidy

The primary goal of all those working in the field of sustainable water management, particularly in the arid and semi-arid zones, is to increase irrigation efficiency, reduce irrigation water losses, and improve water productivity for all crops. This study assessed the automatic irrigation scheduling and irrigation management on the growth, yield, and water productivity of cucumber under greenhouse conditions. A field experiment was conducted using cucumber grown in aplastic greenhouse during the winter of 2017/18 and 2018/19 at the research farm station of the National Research Centre (NRC), El-Noubaria Region, Behaira Governorate, Egypt. In a split-plot experiment, two different methods to control irrigation scheduling (manual control (MC) and automatic control (AC)) were used in the main plots and three deficit irrigation treatments (100% of full irrigation (FI), 80% of FI, and 60% of FI). Through the obtained results, it was found that the use of the automatic control of the irrigation schedule led to an improvement in the productivity and quality characteristics of the cucumber crop. Automatic irrigation control created healthy conditions for the plant roots located under the least water stress. This led to an increase in nitrogen uptake at the ages of 3, 5, 7, and 9 weeks after planting in addition to improving the total leaf area and the chlorophyll content of leaves, which consequently had a greater effect on increasing yield and water productivity of cucumber. Although the highest values of cucumber productivity were obtained with irrigation at 100% of FI, there were no significant differences between 100% FI and 80% of FI, therefore it is preferable to irrigate at 80% of FI, and this means saving 20% of irrigation water that can be used to irrigate other areas. The SALTMED model simulating all of the following evaluation criteria performed well for soil moisture content and N-uptake as well as the leaves area, the yield, and water productivity of cucumber for all treatments for the two growing seasons 2017/18 and 2018/19, with the overall R2 of 0.882, 0.903, 0.975, 0.907, and 0.933, respectively.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 686 ◽  
Author(s):  
Chen ◽  
Qi ◽  
Gui ◽  
Gu ◽  
Ma ◽  
...  

A precisely timed irrigation schedule to match crop water demand is vital to improving water use efficiency in arid farmland. In this study, a real-time irrigation-scheduling infrastructure, Decision Support System for Irrigation Scheduling (DSSIS), based on water stresses predicted by an agro-hydrological model, was constructed and evaluated. The DSSIS employed the Root Zone Water Quality Model (RZWQM2) to predict crop water stresses and soil water content, which were used to trigger irrigation and calculate irrigation amount, respectively, along with forecasted rainfall. The new DSSIS was evaluated through a cotton field experiment in Xinjiang, China in 2016 and 2017. Three irrigation scheduling methods (DSSIS-based (D), soil moisture sensor-based (S), and conventional experience-based (E)), factorially combined with two irrigation rates (full irrigation (FI), and deficit irrigation (DI, 75% of FI)) were compared. The DSSIS significantly increased water productivity (WP) by 26% and 65.7%, compared to sensor-based and experience-based irrigation scheduling methods (p < 0.05), respectively. No significant difference was observed in WP between full and deficit irrigation treatments. In addition, the DSSIS showed economic advantage over sensor- and experience-based methods. Our results suggested that DSSIS is a promising tool for irrigation scheduling.


2020 ◽  
Vol 63 (1) ◽  
pp. 125-132
Author(s):  
Arjun S. Tayade ◽  
Srinivasavedantham Vasantha ◽  
Raja Arun kumar ◽  
Sheriff Anusha ◽  
Rajesh Kumar ◽  
...  

HighlightsSugarcane hybrids with improved IWUE have greater scope in sugarcane agriculture as irrigation water is getting scarce.Among sugarcane hybrids, Co 8371 registered high mean water productivity of 4.18 kg m-3, followed by Co 85019 (3.92 kg m-3), while in I2, six hybrids had significantly higher water productivity (Co 85019, Co 0212, Co 86249, Co 10026, Co 0218 and Co V92102) above 4 kg m-3.Deficit irrigation scheduling (irrigation at recommended interval, with 50% crop evapotranspiration replacement) appears to be far more useful than reducing frequency as well as quantity of irrigation water alone. Hybrid mean water productivity was 3.2, 2.7, and 2.1 kg m-3 in I0, I1, and I2, respectively.ABSTRACT. The escalating deficit rainfall scenario in India indicates that drought is a recurrent phenomenon associated with tropical sugarcane farming, and the availability of irrigation water for sugarcane cultivation will be much less in coming years. To meet the challenge of limited and costly water supply, tropical sugarcane growers will have to find ways of increasing the efficiency of irrigation to maintain high cane yields. More efficient irrigation systems, accurate irrigation scheduling, and the right choice of sugarcane hybrids are potential means of increasing irrigation water use efficiency (IWUE), water productivity (WP), and global water security. With the objective of optimizing irrigation water use, a field experiment evaluating the physiological efficiency of commercial sugarcane hybrids for WP in a sandy clay soil under water-limited conditions was conducted during 2016-2017 at the ICAR-Sugarcane Breeding Institute in Coimbatore, India. The replicated field experiment was laid out in split-plot design with three irrigation levels as the main plot and 33 sugarcane hybrids as subplots. The prevailing climatic conditions during the experiment represented a tropical wet and dry climate, with the wet season lasting from October to December due to the northeast monsoon. The results showed that full irrigation at recommended intervals with 100% crop evapotranspiration (ET) replacement (I0) produced significantly higher cane yield than deficit irrigation at recommended intervals with 50% crop ET replacement (I1) and skipping alternate irrigations with 50% crop ET replacement (I2). The deficit irrigation treatments (I1 and I2) had declines in cane yield of 41.2% and 56.4%, respectively. IWUE was similar in I0 and I1, while I2 had reduced IWUE by 23%. WP was significantly influenced by irrigation level; reduction in irrigation water reduced WP by 17.5% and 36.3% in I1 and I2 compared to I0. Among sugarcane hybrids, Co 85019, Co 13006, Co 10026, Co 99004, CoLk 8102, Co 86249, Co 8371, Co 94008, and Co 95020 yielded higher than the genotypic mean under both deficit irrigation treatments, suggesting their usefulness in deficit irrigation strategies. Sugarcane hybrids with high WP can play a pivotal role in sustaining sugarcane productivity and can reduce the large volumes of irrigation water consumed in water-scarce tropical India. Thus, considering water security, the implications of the results are of paramount importance in promoting the coordinated development and management of water, land, and related resources to maximize economic benefits and social welfare in an equitable manner without compromising the sustainability of vital ecosystems at local as well as national levels. Keywords: Cane yield, Global water security, Sugarcane, Water-limited condition.


Sign in / Sign up

Export Citation Format

Share Document