scholarly journals Design, manufacturing and performance OF Fe–Mn–Si–Ni–Cr shape memory seamless couplings

Author(s):  
I. Esquivel ◽  
J. Malarría ◽  
A.V. Druker
Keyword(s):  
Author(s):  
A. Paulsen ◽  
H. Dumlu ◽  
D. Piorunek ◽  
D. Langenkämper ◽  
J. Frenzel ◽  
...  

AbstractTi75Ta25 high-temperature shape memory alloys exhibit a number of features which make it difficult to use them as spring actuators. These include the high melting point of Ta (close to 3000 °C), the affinity of Ti to oxygen which leads to the formation of brittle α-case layers and the tendency to precipitate the ω-phase, which suppresses the martensitic transformation. The present work represents a case study which shows how one can overcome these issues and manufacture high quality Ti75Ta25 tensile spring actuators. The work focusses on processing (arc melting, arc welding, wire drawing, surface treatments and actuator spring geometry setting) and on cyclic actuator testing. It is shown how one can minimize the detrimental effect of ω-phase formation and ensure stable high-temperature actuation by fast heating and cooling and by intermediate rejuvenation anneals. The results are discussed on the basis of fundamental Ti–Ta metallurgy and in the light of Ni–Ti spring actuator performance.


Author(s):  
Edilberto Alves de Abrantes Júnior ◽  
Augusto Figueiredo ◽  
Carlos Jose de Araujo ◽  
Raimundo Duarte

Author(s):  
Md Mehedi Hasan ◽  
Theocharis Baxevanis

Shape Memory Alloy (SMA)-actuators are efficient, simple, and robust alternatives to conventional actuators when a small volume and/or large force and stroke are required. The analysis of their failure response is critical for their design in order to achieve optimum functionality and performance. Here, (i) the existing knowledge base on the fatigue and overload fracture response of SMAs under actuation loading is reviewed regarding the failure micromechanisms, empirical relations for actuation fatigue life prediction, experimental measurements of fracture toughness and fatigue crack growth rates, and numerical investigations of toughness properties and (ii) future developments required to expand the acquired knowledge, enhance the current understanding, and ultimately enable commercial applications of SMA-actuators are discussed.


Author(s):  
Rachael Granberry ◽  
Brad Holschuh ◽  
Julianna Abel

Abstract Anisotropic textiles are commonly used in wearable applications to achieve varied bi-axial stress-strain behavior around the body. Auxetic textiles, specifically those that exhibit a negative Poisson’s ratio (v), likewise exhibit intriguing behavior such as volume increase in response to impact or variable air permeability. Active textiles are traditional textile structures that integrate smart materials, such as shape memory alloys, shape memory polymers, or carbon nanotubes, to enable spatial actuation behavior, such as contraction for on-body compression or corrugation for haptic feedback. This research is a first experimental investigation into active auxetic and shearing textile structures. These textile structures leverage the bending- and torsional-deformations of the fibers/filaments within traditional textile structures as well as the shape memory effect of shape memory alloys to achieve novel, spatial performance. Five textile structures were fabricated from shape memory alloy wire deformed into needle lace and weft knit textile structures. All active structures exhibited anisotropic behavior and four of the five structures exhibited auxetic behavior upon free recovery, contracting in both x- and y-axes upon actuation (v = −0.3 to −1.5). One structure exhibited novel shearing behavior, with a mean free angle recovery of 7°. Temperature-controlled biaxial tensile testing was conducted to experimentally investigate actuation behavior and anisotropy of the designed structures. The presented design and performance of these active auxetic, anisotropic, and shearing textiles inspire new capabilities for applications, such as smart wearables, soft robotics, reconfigurable aerospace structures, and medical devices.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 6
Author(s):  
Lena Seigner ◽  
Olha Bezsmertna ◽  
Sebastian Fähler ◽  
Georgino Kaleng Tshikwand ◽  
Frank Wendler ◽  
...  

This paper presents the design, fabrication and performance of origami-based folding microactuators based on NiTi films showing the one-way shape memory effect. Freestanding NiTi films are micromachined by laser cutting or photolithography to achieve double-beam structures allowing for direct Joule heating with an electrical current. The NiTi microactuators are interconnected to rigid sections (tiles) forming an initial planar system that self-folds into a predetermined 3D shape upon heating. A thermo-mechanical treatment is used for shape setting of as-received specimens to approach a maximum folding angle of 180°. The bending moments, bending radii and load-dependent folding angles upon Joule heating are evaluated. The shape setting process is particularly effective for small bending radii, which, however, generates residual plastic strain. After shape setting, unloaded beam structures show recoverable bending deflection between 0° and 140° for a maximum heating power of 900 mW. By introducing additional loads to account for the effect of the tiles, the smooth folding characteristic evolves into a sharp transition, whereby full deflection up to 180° is reached.


Sign in / Sign up

Export Citation Format

Share Document