Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries

2020 ◽  
Vol 223 (3) ◽  
pp. 437.e1-437.e15
Author(s):  
Joshua Guedalia ◽  
Michal Lipschuetz ◽  
Michal Novoselsky-Persky ◽  
Sarah M. Cohen ◽  
Amihai Rottenstreich ◽  
...  
2018 ◽  
Vol 7 (3.12) ◽  
pp. 1038 ◽  
Author(s):  
Eliganti Ramalakshmi ◽  
Sindhuja Reddy Kamidi

In general 90 out of 100 startups fail to gain expected funding. There can be several reasons like bad management, lack of sufficient funds, good working team etc. which leads to failure of startup. This work aims to create a machine learning model for predicting the range of funding for the startups based on many key attributesthat are involved at different stages in the startup functioning. It is very important to predict the range of funding prior to the implementation of project and till today not much work is done in this respect. This paper proposes implementing a model to predict the funding of a startups based on many important factors like idea of the startup, place where the startup established, domain vertical to which the startup belongs, prior investors, type of funding the organization is expecting. A model is developed by working on real time data of startups from 2015 to 2017. Classification and regression algorithms are used to build the model.  


2021 ◽  
Author(s):  
Rushad Ravilievich Rakhimov ◽  
Oleg Valerievich Zhdaneev ◽  
Konstantin Nikolaevich Frolov ◽  
Maxim Pavlovich Babich

Abstract The ultimate objective of this paper is to describe the experience of using a machine learning model prepared by the ensemble method to prevent stuck pipe events during well construction process on extended reach wells. The tasks performed include collecting, analyzing and cleaning historical data, selecting and preparing a machine learning model, testing it on real-time data by means of desktop application. The idea is to display the solution at the rig floor, allowing Driller to quickly take actions for prevention of stuck pipe event. Historical data mining and analysis were performed using software for remote monitoring. Preparation, labelling and cleaning of historical and real-time data were executed using programmable scripts and big data techniques. The machine learning algorithm was developed using the ensemble method, which allows to combine several models to improve the final result. On the field of interest, the most common type of stuck pipe are solids induced pack offs. They occur due to insufficient hole cleaning from drilled cuttings and wellbore collapse due to rocks instability. Stuck pipe prevention on extended reach drilling (ERD) wells requires holistic approach meanwhile final role is assigned to the driller. Due to continuously exceeding ERD envelope and increased workloads on both personnel and drilling equipment, the effectiveness of preventing accidents is deteriorating. This leads to severe consequences: Bottom Hole Assembly lost in hole, the necessity to re-drill the bore and eventually to increased Non-Productive Time (NPT). Developed application based on ensemble machine learning algorithm shows prediction accuracy above 94%. Reacting on alarms, driller can quickly take measures to prevent downhole accidents during well construction of ERD wells.


Forecasting ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 682-694
Author(s):  
Aida Boudhaouia ◽  
Patrice Wira

This article presents a real-time data analysis platform to forecast water consumption with Machine-Learning (ML) techniques. The strategy fully relies on a web-oriented architecture to ensure better management and optimized monitoring of water consumption. This monitoring is carried out through a communicating system for collecting data in the form of unevenly spaced time series. The platform is completed by learning capabilities to analyze and forecast water consumption. The analysis consists of checking the data integrity and inconsistency, in looking for missing data, and in detecting abnormal consumption. Forecasting is based on the Long Short-Term Memory (LSTM) and the Back-Propagation Neural Network (BPNN). After evaluation, results show that the ML approaches can predict water consumption without having prior knowledge about the data and the users. The LSTM approach, by being able to grab the long-term dependencies between time steps of water consumption, allows the prediction of the amount of consumed water in the next hour with an error of some liters and the instants of the 5 next consumed liters in some milliseconds.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Sivadi Sivadi ◽  
Moorthy Moorthy ◽  
Vijender Solanki

Introduction: The article is the product of the research “Due to the increase in popularity of Internet of Things (IoT), a huge amount of sensor data is being generated from various smart city applications”, developed at Pondicherry University in the year 2019. Problem:To acquire and analyze the huge amount of sensor-generated data effectively is a significant problem when processing the data. Objective:  To propose a novel framework for IoT sensor data analysis using machine learning based improved Gaussian Mixture Model (GMM) by acquired real-time data.  Methodology:In this paper, the clustering based GMM models are used to find the density patterns on a daily or weekly basis for user requirements. The ThingSpeak cloud platform used for performing analysis and visualizations. Results:An analysis has been performed on the proposed mechanism implemented on real-time traffic data with Accuracy, Precision, Recall, and F-Score as measures. Conclusions:The results indicate that the proposed mechanism is efficient when compared with the state-of-the-art schemes. Originality:Applying GMM and ThingSpeak Cloud platform to perform analysis on IoT real-time data is the first approach to find traffic density patterns on busy roads. Restrictions:There is a need to develop the application for mobile users to find the optimal traffic routes based on density patterns. The authors could not concentrate on the security aspect for finding density patterns.


Author(s):  
Atheer Alahmed ◽  
Amal Alrasheedi ◽  
Maha Alharbi ◽  
Norah Alrebdi ◽  
Marwan Aleasa ◽  
...  

2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


Sign in / Sign up

Export Citation Format

Share Document