Effect of epithelial rests of Malassez’ cells on RANKL mRNA expression and ALP activity by periodontal ligament fibroblasts stimulated with sonicated Porphyromonas gingivalis in vitro

Author(s):  
Kenichi Matsuzaka ◽  
Eitoyo Kokubu ◽  
Takashi Inoue
2003 ◽  
Vol 82 (8) ◽  
pp. 641-645 ◽  
Author(s):  
T. Yamamoto ◽  
F. Myokai ◽  
F. Nishimura ◽  
T. Ohira ◽  
N. Shiomi ◽  
...  

Genes expressed by human periodontal ligament fibroblasts (HPFs) are likely to be associated with specific functions of the ligament. The aim of this study is to profile genes expressed highly by HPFs. A library (6 × 103 pfu) was constructed, followed by subtraction of HPF cDNAs with human gingival fibroblast (HGF) cDNAs. Reverse-dot hybridization revealed that 33 clones expressed higher levels of specific mRNAs in HPFs than in HGFs. These were mRNAs for known genes, including several associated with maturation and differentiation of cells. None had been reported in PFs. One clone, PDL-29, identified as a COX assembly factor, showed much stronger mRNA expression in HPFs than in HGFs in culture. In rat periodontium, however, PDL-29 mRNA expression was similar in PFs and GFs. These results suggest that HPFs express many previously unreported genes associated with maturation and differentiation, but expression can differ in vitro and in vivo.


2006 ◽  
Vol 95 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Wen-Fang Chen ◽  
Man-Sau Wong

Genistein and parathyroid hormone (PTH) are anabolic agents that stimulate bone formation through their direct actions in osteoblastic cells. In the present study, we aimed to determinewhether genistein modulates the actions of PTH in human osteoblastic SaOS-2 cells in an oestrogen-depleted condition. The present results showed that genistein (10−8to 10−6m) induced alkaline phosphatase (ALP) activity and osteoprotegrin (OPG) expression in SaOS-2 cells in a dose-dependent manner. These effects could be completely abolished by co-treatment with oestrogen antagonist ICI 182780 (7α-[9-[(4,4,5,5,5-pentafluoropentyl)sulfonyl]nonyl]-estra-1,3,5(10)-triene-3,17β-diol). Genistein (at 1μm) could stimulate the mRNA expression of receptor activator of NF-κB ligand (RANKL). As OPG and RANKL are known to modulate osteoclastogenesis, the ability of genistein to modulate OPG and RANKL expression in SaOS-2 cells suggested that it might modulate osteoclastogenesis through its direct actions on osteoblastic cells. PTH (at 10nm) stimulated ALP activity, induced RANKL mRNA expression and suppressed OPG mRNA expression in SaOS-2 cells, confirming its bi-directional effects on osteoblastic cells. Pre-treatment of SaOS-2 cells with genistein andoestrogen not only enhanced PTH-induced ALP activity, but also attenuated PTH up regulation ofRANKL mRNA expression and PTH down regulation of OPG mRNA expression. Taken together, the present study provides the first evidence that genistein could modulate the actions of PTH in human osteoblastic SaOS-2 cells in an oestrogen-depleted condition.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 932
Author(s):  
Julia Brockhaus ◽  
Rogerio B. Craveiro ◽  
Irma Azraq ◽  
Christian Niederau ◽  
Sarah K. Schröder ◽  
...  

Human Periodontal Ligament Fibroblasts (hPDLF), as part of the periodontal apparatus, modulate inflammation, regeneration and bone remodeling. Interferences are clinically manifested as attachment loss, tooth loosening and root resorption. During orthodontic tooth movement (OTM), remodeling and adaptation of the periodontium is required in order to enable tooth movement. hPDLF involvement in the early phase-OTM compression side was investigated for a 72-h period through a well-studied in vitro model. Changes in the morphology, cell proliferation and cell death were analyzed. Specific markers of the cell cycle were investigated by RT-qPCR and Western blot. The study showed that the morphology of hPDLF changes towards more unstructured, unsorted filaments under mechanical compression. The total cell numbers were significantly reduced with a higher cell death rate over the whole observation period. hPDLF started to recover to pretreatment conditions after 48 h. Furthermore, key molecules involved in the cell cycle were significantly reduced under compressive force at the gene expression and protein levels. These findings revealed important information for a better understanding of the preservation and remodeling processes within the periodontium through Periodontal Ligament Fibroblasts during orthodontic tooth movement. OTM initially decelerates the hPDLF cell cycle and proliferation. After adapting to environmental changes, human Periodontal Ligament Fibroblasts can regain homeostasis of the periodontium, affecting its reorganization.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Francesca Diomede ◽  
Soundara Rajan Thangavelu ◽  
Ilaria Merciaro ◽  
Monica D'Orazio ◽  
Placido Bramanti ◽  
...  

<p>Periodontitis is a chronic oral inflammatory disease produced by bacteria. Gingival retraction and bone and connective tissues resorption are the hallmarks of this disease. Chronic periodontitis may contribute to the risk of onset or progression of neuroinflammatory pathological conditions, such as Alzheimer’s disease. The main goal of the present study was to investigate if the role of epigenetic modulations is involved in periodontitis using human periodontal ligament stem cells (hPDLSCs) as an <em>in vitro</em> model system. hPDLSCs were treated with lipopolysaccharide of <em>Porphyromonas gingivalis</em> and the expression of proteins associated with DNA methylation and histone acetylation, such as DNMT1 and p300, respectively, and inflammatory transcription factor NF-kB, were examined. Immunofluorescence, Western blot and next generation sequencing results demonstrated that <em>P. gingivalis </em>lipopolysaccharide significantly reduced DNA methylase DNMT1, while it markedly upregulated the level of histone acetyltransferase p300 and NF-kB in hPDLSCs. Our results showed that <em>P. gingivalis </em>lipopolysaccharide markedly regulate the genes involved in epigenetic mechanism, which may result in inflammation induction. We propose that <em>P. gingivalis </em>lipopolysaccharide-treated hPDLSCs could be a potential in vitro model system to study epigenetics modulations associated with periodontitis, which might be helpful to identify novel biomarkers linked to this oral inflammatory disease.</p>


Sign in / Sign up

Export Citation Format

Share Document