scholarly journals Lingual nerve injury due to wisdom tooth germ extraction repaired using a conduit for peripheral nerve regeneration: A preliminary case report

Author(s):  
Soichiro Toyodome ◽  
Kazuhide Matsunaga ◽  
Noriko Iwamoto ◽  
Seiya Suzuki ◽  
Naoto Nemoto ◽  
...  
2020 ◽  
Vol 66 (4) ◽  
pp. 188-193
Author(s):  
Akihiro NISHIYAMA ◽  
Takahiko SHIBAHARA ◽  
Kenichi SASAKI ◽  
Masayuki TAKANO ◽  
Kenichi MASTUZAKA ◽  
...  

2012 ◽  
Vol 40 (4) ◽  
pp. 296-302
Author(s):  
Yanhua Wang ◽  
Peixun Zhang ◽  
Xiaofeng Yin ◽  
Jianping Peng ◽  
Yuhui Kou ◽  
...  

2006 ◽  
Vol 10 (03) ◽  
pp. 131-140 ◽  
Author(s):  
Yasushi Morisawa ◽  
Shinichiro Takayama ◽  
Kazuhiko Okushi ◽  
Toshiyasu Nakamura ◽  
Keiichi Fukuda ◽  
...  

Peripheral nerve injury changes the kinetics of neurotrophins. The production of several neurotrophins increases at the site of injury. Although numerous reports have described changes in neurotrophins over time in areas of nerve injury, neurotrophin mRNA is present at very low levels in target tissues, making accurate quantitation difficult. We developed a reverse transcription–polymerase chain reaction/high-performance liquid chromatography (RT-PCR/HPLC) method that enables accurate quantitation of neurotrophin mRNA. We then attempted to quantitate mRNA levels for nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) produced by skeletal muscle innervated by the sciatic nerve following transection and reattachment of the nerve in mice. In addition, wet weights of the muscle were measured and changes in weight over time were determined. The results indicated that neurotrophin production in muscle increases as a result of peripheral nerve denervation due to transection, and decreases with nerve regeneration and reinnervation resulting from reattachment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shixian Dong ◽  
Sijia Feng ◽  
Yuzhou Chen ◽  
Mo Chen ◽  
Yimeng Yang ◽  
...  

Peripheral nerve injury gives rise to devastating conditions including neural dysfunction, unbearable pain and even paralysis. The therapeutic effect of current treatment for peripheral nerve injury is unsatisfactory, resulting in slow nerve regeneration and incomplete recovery of neural function. In this study, nerve suture combined with ADSCs injection was adopted in rat model of sciatic nerve injury. Under real-time visualization of the injected cells with the guidance of NIR-II fluorescence imaging in vivo, a spatio-temporal map displaying cell migration from the proximal injection site (0 day post-injection) of the nerve to the sutured site (7 days post-injection), and then to the distal section (14 days post-injection) was demonstrated. Furthermore, the results of electromyography and mechanical pain threshold indicated nerve regeneration and functional recovery after the combined therapy. Therefore, in the current study, the observed ADSCs migration in vivo, electrophysiological examination results and pathological changes all provided robust evidence for the efficacy of the applied treatment. Our approach of nerve suture combined with ADSCs injection in treating peripheral nerve injury under real-time NIR-II imaging monitoring in vivo added novel insights into the treatment for peripheral nerve injury, thus further enhancing in-depth understanding of peripheral nerve regeneration and the mechanism behind.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bo Jia ◽  
Wei Huang ◽  
Yu Wang ◽  
Peng Zhang ◽  
Zhiwei Wang ◽  
...  

While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C–/–) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C–/– mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C–/– mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C–/– mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.


2018 ◽  
Vol 60 (4) ◽  
pp. 526-535 ◽  
Author(s):  
Yuta Okuwa ◽  
Taku Toriumi ◽  
Hidenori Nakayama ◽  
Tatsuaki Ito ◽  
Keita Otake ◽  
...  

2017 ◽  
Vol 39 (10) ◽  
pp. 926-939 ◽  
Author(s):  
Camila Cardoso Diogo ◽  
José Arthur Camassa ◽  
José Eduardo Pereira ◽  
Luís Maltez da Costa ◽  
Vítor Filipe ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 572
Author(s):  
Andrea Lavorato ◽  
Stefania Raimondo ◽  
Marina Boido ◽  
Luisa Muratori ◽  
Giorgia Durante ◽  
...  

Traumatic peripheral nerve lesions affect hundreds of thousands of patients every year; their consequences are life-altering and often devastating and cause alterations in movement and sensitivity. Spontaneous peripheral nerve recovery is often inadequate. In this context, nowadays, cell therapy represents one of the most innovative approaches in the field of nerve repair therapies. The purpose of this systematic review is to discuss the features of different types of mesenchymal stem cells (MSCs) relevant for peripheral nerve regeneration after nerve injury. The published literature was reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the keywords “nerve regeneration”, “stem cells”, “peripheral nerve injury”, “rat”, and “human” were used. Additionally, a “MeSH” research was performed in PubMed using the terms “stem cells” and “nerve regeneration”. The characteristics of the most widely used MSCs, their paracrine potential, targeted stimulation, and differentiation potentials into Schwann-like and neuronal-like cells are described in this paper. Considering their ability to support and stimulate axonal growth, their remarkable paracrine activity, their presumed differentiation potential, their extremely low immunogenicity, and their high survival rate after transplantation, ADSCs appear to be the most suitable and promising MSCs for the recovery of peripheral nerve lesion. Clinical considerations are finally reported.


2021 ◽  
Author(s):  
Songyang Liu ◽  
Yijun Liu ◽  
Liping Zhou ◽  
Ci Li ◽  
Meng Zhang ◽  
...  

Peripheral nerve injury (PNI) remains an unresolved challenge in the medicine area. With the development of biomaterial science and tissue engineering, a variety of nerve conduits were widely applied in...


Sign in / Sign up

Export Citation Format

Share Document