scholarly journals Safe and Effective Disease-Modifying Therapies for Small Blood Vessel Disease in the Brain

Author(s):  
Joseph F. Arboleda-Velasquez
Diabetes ◽  
1960 ◽  
Vol 9 (6) ◽  
pp. 503-505 ◽  
Author(s):  
A. R. Colwell

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2573 ◽  
Author(s):  
Yi-Zeng Hsieh ◽  
Yu-Cin Luo ◽  
Chen Pan ◽  
Mu-Chun Su ◽  
Chi-Jen Chen ◽  
...  

Magnetic resonance imaging (MRI) offers the most detailed brain structure image available today; it can identify tiny lesions or cerebral cortical abnormalities. The primary purpose of the procedure is to confirm whether there is structural variation that causes epilepsy, such as hippocampal sclerotherapy, local cerebral cortical dysplasia, and cavernous hemangioma. Cerebrovascular disease, the second most common factor of death in the world, is also the fourth leading cause of death in Taiwan, with cerebrovascular disease having the highest rate of stroke. Among the most common are large vascular atherosclerotic lesions, small vascular lesions, and cardiac emboli. The purpose of this thesis is to establish a computer-aided diagnosis system based on small blood vessel lesions in MRI images, using the method of Convolutional Neural Network and deep learning to analyze brain vascular occlusion by analyzing brain MRI images. Blocks can help clinicians more quickly determine the probability and severity of stroke in patients. We analyzed MRI data from 50 patients, including 30 patients with stroke, 17 patients with occlusion but no stroke, and 3 patients with dementia. This system mainly helps doctors find out whether there are cerebral small vessel lesions in the brain MRI images, and to output the found results into labeled images. The marked contents include the position coordinates of the small blood vessel blockage, the block range, the area size, and if it may cause a stroke. Finally, all the MRI images of the patient are synthesized, showing a 3D display of the small blood vessels in the brain to assist the doctor in making a diagnosis or to provide accurate lesion location for the patient.


OCL ◽  
2018 ◽  
Vol 25 (4) ◽  
pp. D404 ◽  
Author(s):  
Min Kim ◽  
Cristina Legido-Quigley

Alzheimer’s disease (AD) is a progressive neurodegenerative disease which affects a growing number of people as the population ages worldwide. Alzheimer’s Disease International estimated that more than 100 million people will be living with dementia by 2050. At present there are no disease-modifying therapies and research has expanded to the −omic sciences with scientists aiming to get a holistic view of the disease using systems medicine. Metabolomics and Lipidomics give a snap-shot of the metabolism. As analyzing the brainin vivois difficult, the metabolic information of the periphery has potential to unravel mechanisms that have not been considered, such as those that link the brain to the liver and the gut or other organs. With that in mind we have produced a mini-review, to record a number of studies in the field and the molecular pathways that have been flagged in animal and human models of AD. Human studies deal with cohorts in the order of the hundreds due to the difficulty of organizing AD studies, however it is possible that these first pilots point towards important mechanisms. The trend in these small studies is the involvement of many organs and pathways. Some findings, that have been reproduced, are ceramides being increased, phospholipids and neurotransmitters depleted and sterols being found depleted too. Initial findings point to an important role to lipid homeostasis in AD, this is not surprising as the brain’s main constituents are water and lipids.


Sign in / Sign up

Export Citation Format

Share Document