The contribution of blood oxygenation changes in the capillary bed and a small blood vessel on the brain surface to NIRS signals

Author(s):  
Kazushi Honjyo ◽  
Eiji Okada ◽  
Atsushi Maki ◽  
David T. Delpy
Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2573 ◽  
Author(s):  
Yi-Zeng Hsieh ◽  
Yu-Cin Luo ◽  
Chen Pan ◽  
Mu-Chun Su ◽  
Chi-Jen Chen ◽  
...  

Magnetic resonance imaging (MRI) offers the most detailed brain structure image available today; it can identify tiny lesions or cerebral cortical abnormalities. The primary purpose of the procedure is to confirm whether there is structural variation that causes epilepsy, such as hippocampal sclerotherapy, local cerebral cortical dysplasia, and cavernous hemangioma. Cerebrovascular disease, the second most common factor of death in the world, is also the fourth leading cause of death in Taiwan, with cerebrovascular disease having the highest rate of stroke. Among the most common are large vascular atherosclerotic lesions, small vascular lesions, and cardiac emboli. The purpose of this thesis is to establish a computer-aided diagnosis system based on small blood vessel lesions in MRI images, using the method of Convolutional Neural Network and deep learning to analyze brain vascular occlusion by analyzing brain MRI images. Blocks can help clinicians more quickly determine the probability and severity of stroke in patients. We analyzed MRI data from 50 patients, including 30 patients with stroke, 17 patients with occlusion but no stroke, and 3 patients with dementia. This system mainly helps doctors find out whether there are cerebral small vessel lesions in the brain MRI images, and to output the found results into labeled images. The marked contents include the position coordinates of the small blood vessel blockage, the block range, the area size, and if it may cause a stroke. Finally, all the MRI images of the patient are synthesized, showing a 3D display of the small blood vessels in the brain to assist the doctor in making a diagnosis or to provide accurate lesion location for the patient.


Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S543-S543
Author(s):  
Satoshi Kimura ◽  
Keigo Matsumoto ◽  
Yoshio Imahori ◽  
Katsuyoshi Mineura ◽  
Toshiyuki Itoh

Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


2021 ◽  
Author(s):  
Tsukasa Koike ◽  
Taichi Kin ◽  
Shota Tanaka ◽  
Katsuya Sato ◽  
Tatsuya Uchida ◽  
...  

Abstract BACKGROUND Image-guided systems improve the safety, functional outcome, and overall survival of neurosurgery but require extensive equipment. OBJECTIVE To develop an image-guided surgery system that combines the brain surface photographic texture (BSP-T) captured during surgery with 3-dimensional computer graphics (3DCG) using projection mapping. METHODS Patients who underwent initial surgery with brain tumors were prospectively enrolled. The texture of the 3DCG (3DCG-T) was obtained from 3DCG under similar conditions as those when capturing the brain surface photographs. The position and orientation at the time of 3DCG-T acquisition were used as the reference. The correct position and orientation of the BSP-T were obtained by aligning the BSP-T with the 3DCG-T using normalized mutual information. The BSP-T was combined with and displayed on the 3DCG using projection mapping. This mixed-reality projection mapping (MRPM) was used prospectively in 15 patients (mean age 46.6 yr, 6 males). The difference between the centerlines of surface blood vessels on the BSP-T and 3DCG constituted the target registration error (TRE) and was measured in 16 fields of the craniotomy area. We also measured the time required for image processing. RESULTS The TRE was measured at 158 locations in the 15 patients, with an average of 1.19 ± 0.14 mm (mean ± standard error). The average image processing time was 16.58 min. CONCLUSION Our MRPM method does not require extensive equipment while presenting information of patients’ anatomy together with medical images in the same coordinate system. It has the potential to improve patient safety.


2014 ◽  
Vol 21 (3) ◽  
pp. 301-304
Author(s):  
Amit Agrawal

Abstract Meningiomas arising from the falcotentorial junction are the rarest subgroup of tentorial menigiomas. Because of the distance from the brain surface and the surrounding deep cerebral veins these lesions are difficult and dangerous to treat surgically. A 45-year-old female presented with the history of progressive headache, disorientation, unsteadiness, and urinary incontinence for over 6 months. The patient developed difficulty in swallowing, and weakness of all four limbs for the last 7 days. CT scan brain plain and contrast showed a large well defined, homogenously enhancing mass lesion in the peineal region with compression of the upper brain stem and obstructive hydrocephalus. Inspite of the good surgical decompression the patient did not do well. As described in the literature, the compression of the midbrain can cause severe respiratory disturbances with fatal outcome; probably the similar mechanism resulted in poor outcome in present case. As we noticed the diffuse hypodensity in midbrain on CT scan, similar findings have been described in literature in cases of transtentorial herniation with poorer outcome.


2020 ◽  
Vol 49 (1) ◽  
pp. E2 ◽  
Author(s):  
Kai J. Miller ◽  
Dora Hermes ◽  
Nathan P. Staff

Brain–computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.


Sign in / Sign up

Export Citation Format

Share Document