More than the sum of its parts: individual behavioural phenotypes of a wild pinniped

2021 ◽  
Vol 179 ◽  
pp. 213-223
Author(s):  
Friederike Zenth ◽  
Eugene J. DeRango ◽  
Oliver Krüger ◽  
Paolo Piedrahita ◽  
Diego Páez-Rosas ◽  
...  
2015 ◽  
Vol 282 (1813) ◽  
pp. 20150603 ◽  
Author(s):  
Shaun S. Killen ◽  
Julie J. H. Nati ◽  
Cory D. Suski

The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus , we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations.


2014 ◽  
Vol 24 (10) ◽  
pp. 468-472 ◽  
Author(s):  
Jane Waite ◽  
Mary Heald ◽  
Lucy Wilde ◽  
Kate Woodcock ◽  
Alice Welham ◽  
...  

2002 ◽  
Vol 2002 ◽  
pp. 66-66
Author(s):  
N. Ball ◽  
M.J. Haskell ◽  
J.L. Williams ◽  
J.M. Deag

Farm animals show individual variation in their behavioural responses to handling and management systems on farms. These behavioural responses are presumed to reflect underlying temperament traits such as fear or aggression. Information about the location of genes that influence temperament traits could be used in selective breeding programmes to improve animal welfare, as selection for desirable behavioural responses would increase the ability of animals to cope with stressors encountered on farms. The aims of this study were to obtain reliable temperament measurements in cattle using behavioural tests, and to use this data to localise the genes (quantitative trait loci) that are involved in such traits.Behavioural data obtained in temperament tests must be shown to reflect underlying traits by demonstrating intra-animal repeatability, inter-animal variability and validity. The objectives of this experiment were i) to carry out four behaviour tests on a group of heifers, and examine the repeatability, variability and validity of the results obtained; ii) to correlate the behavioural data with genotyping data from a large number of heifers to look for associations between behavioural phenotypes and genetic markers. Associations localise quantitative trait loci (QTLs), or regions of the genome, that are involved in these traits.


Author(s):  
L. Samuni ◽  
F. Wegdell ◽  
M. Surbeck

AbstractThe importance of cultural processes to behavioural diversity, especially in our closest living relatives, is central for revealing the evolutionary origins of human culture. Whereas potential cultural traits are extensively investigated in chimpanzees, our other closest living relative, the bonobo, is often overlooked as a candidate model. Further, a prominent critique to many examples of proposed animal cultures is premature exclusions of environmental confounds known to shape behavioural phenotypes. We addressed these gaps by investigating variation in prey preference expression between neighbouring bonobo groups that associate and share largely overlapping home ranges. We find specific group preference for duiker or anomalure hunting that are otherwise unexplained by variation in spatial usage of hunt locations, seasonality or sizes of hunting parties. Our findings demonstrate that group-specific behaviours emerge independently of the local ecology, indicating that hunting techniques in bonobos may be culturally transmitted. We suggest that the tolerant intergroup relations of bonobos offer an ideal context to explore drivers of behavioural phenotypes, the essential investigations for phylogenetic constructs of the evolutionary origins of culture.


2021 ◽  
Author(s):  
◽  
Jenna Laurel Fleet

The amount of dissolved carbon dioxide (CO2) and the acidity of aquatic ecosystems is increasing as atmospheric CO2 concentrations increase due to human activities. Changes in pH and dissolved CO2 can have considerable aversive effects on fish physiology and behaviour, which can result in negative effects on fish populations. Multigenerational studies have found that the conditions experienced by parents can have significant effects on the performance of their offspring and understanding these effects can help to predict how fish populations will cope in future conditions. Additionally, repeatable behavioural phenotypes are good predictors of trends in behaviour, can be useful predictors of other physiological and life history traits, and can be subject to selection pressures. Unfortunately, the effects of elevated CO2 on freshwater fishes over multiple generations, and the effects of behavioural phenotypes, are poorly understood. In my thesis, freshwater Japanese Medaka (Oryzias latipes) were used to investigate the influence of phenotypic variation and differences in time of exposure (generational) on biological responses to elevated CO2. Lab-reared medaka were divided into ‘responsive’ and ‘non-responsive’ groups based on behavioural differences from the population mean during acute exposure to high CO2 in a common shuttling and novel tank behavioural assay. Responsive and non-responsive fish in parental generation (P) were subdivided and exposed to either control (~480 ppm) or high CO2 (~1250 ppm) conditions over a 6-week period. Following this time, eggs from this generation were collected and randomly selected into either high or control conditions, where they were hatched and reared until maturation (filial generation one (F1), 18 weeks). Eggs from F1 were collected and hatched and reared in the same conditions as their parents until adulthood (filial generation two (F2), 24 weeks). Body condition (size, weight and length), behaviour (total distance moved, time spent in the outer zone of the behavioural arena, and swimming direction), reproductive (number of eggs, size of eggs, and survival to hatch) performance, and the relative abundance of various mRNA transcripts in whole brain tissue of fish was measured across these three generations. Behavioural phenotypes influenced reproduction for P and F2 generation fish, and growth for F1 and F2 fish; suggesting that intraspecific variation in behavioural phenotypes may influence how medaka respond to elevated CO2. However, behavioural phenotypes did not have a significant effect on mRNA abundance on genes targeted in my study. Multigenerational exposure to elevated CO2 were shown to improve the performance of offspring in some measures and resulted in changes of mRNA abundance of several genes. Transgenerational exposure, where a parent or grandparent was exposed to elevated CO2 but the offspring were not exposed to elevated CO2, resulted in some deleterious effects suggesting that, generally, exposure to environmental conditions that differ from that of their parents may put fish especially at risk. In my thesis, current CO2 exposure appeared to be the best predictor of overall condition, where fish exposed to elevated CO2 were worse off than fish exposed to control CO2 conditions. The results of this research contribute to filling a current gap of knowledge in understanding how freshwater fish will respond to future conditions over an ecologically-relevant time scale. Importantly, this information will contribute to generating more informed decisions on freshwater ecosystem management and future research directions. Marine and freshwater environments offer food and water security and are of high importance to the economy and the health of our planet, making my research relevant to our broader society.


Sign in / Sign up

Export Citation Format

Share Document