scholarly journals Effects of multigenerational exposure and phenotypic variation on a freshwater fish species exposed to elevated carbon dioxide (CO2)

2021 ◽  
Author(s):  
◽  
Jenna Laurel Fleet

The amount of dissolved carbon dioxide (CO2) and the acidity of aquatic ecosystems is increasing as atmospheric CO2 concentrations increase due to human activities. Changes in pH and dissolved CO2 can have considerable aversive effects on fish physiology and behaviour, which can result in negative effects on fish populations. Multigenerational studies have found that the conditions experienced by parents can have significant effects on the performance of their offspring and understanding these effects can help to predict how fish populations will cope in future conditions. Additionally, repeatable behavioural phenotypes are good predictors of trends in behaviour, can be useful predictors of other physiological and life history traits, and can be subject to selection pressures. Unfortunately, the effects of elevated CO2 on freshwater fishes over multiple generations, and the effects of behavioural phenotypes, are poorly understood. In my thesis, freshwater Japanese Medaka (Oryzias latipes) were used to investigate the influence of phenotypic variation and differences in time of exposure (generational) on biological responses to elevated CO2. Lab-reared medaka were divided into ‘responsive’ and ‘non-responsive’ groups based on behavioural differences from the population mean during acute exposure to high CO2 in a common shuttling and novel tank behavioural assay. Responsive and non-responsive fish in parental generation (P) were subdivided and exposed to either control (~480 ppm) or high CO2 (~1250 ppm) conditions over a 6-week period. Following this time, eggs from this generation were collected and randomly selected into either high or control conditions, where they were hatched and reared until maturation (filial generation one (F1), 18 weeks). Eggs from F1 were collected and hatched and reared in the same conditions as their parents until adulthood (filial generation two (F2), 24 weeks). Body condition (size, weight and length), behaviour (total distance moved, time spent in the outer zone of the behavioural arena, and swimming direction), reproductive (number of eggs, size of eggs, and survival to hatch) performance, and the relative abundance of various mRNA transcripts in whole brain tissue of fish was measured across these three generations. Behavioural phenotypes influenced reproduction for P and F2 generation fish, and growth for F1 and F2 fish; suggesting that intraspecific variation in behavioural phenotypes may influence how medaka respond to elevated CO2. However, behavioural phenotypes did not have a significant effect on mRNA abundance on genes targeted in my study. Multigenerational exposure to elevated CO2 were shown to improve the performance of offspring in some measures and resulted in changes of mRNA abundance of several genes. Transgenerational exposure, where a parent or grandparent was exposed to elevated CO2 but the offspring were not exposed to elevated CO2, resulted in some deleterious effects suggesting that, generally, exposure to environmental conditions that differ from that of their parents may put fish especially at risk. In my thesis, current CO2 exposure appeared to be the best predictor of overall condition, where fish exposed to elevated CO2 were worse off than fish exposed to control CO2 conditions. The results of this research contribute to filling a current gap of knowledge in understanding how freshwater fish will respond to future conditions over an ecologically-relevant time scale. Importantly, this information will contribute to generating more informed decisions on freshwater ecosystem management and future research directions. Marine and freshwater environments offer food and water security and are of high importance to the economy and the health of our planet, making my research relevant to our broader society.

Author(s):  
Sumit Kumar Dey ◽  
B. Chakrabarti ◽  
R Prasanna ◽  
S. D. Singh ◽  
T J Purakayastha ◽  
...  

Increase in the concentration of atmospheric carbon dioxide (CO2) has significant impact on crop growth and productivity. A study was undertaken during the kharif season to study the impacts of elevated CO2 and cyanobacterial inoculation on growth and yield of mungbean crop under different doses of P using Free Air Carbon dioxide Enrichment (FACE) facility. The crop was grown under two CO2 levels i.e., ambient (400 µmol mol-1) and elevated (550 ± 20 µmol mol-1), with five levels of P (0, 8, 12, 16 and 20 mg P kg-1 soil) and 2 levels of calothrix sp. (with and without cyanobacteria) inoculation. Elevated CO2 level increased seed yield by 35.0% and biomass yield by 31.3%. Leaf area, photosynthesis rate and leaf chlorophyll content significantly increased at high CO2 level. Yield attributes such as number of pods plant-1, number of seeds pod-1 and test weight also increased at high CO2 level. Application of P and cyanobacterial inoculation further increased growth and yield of the crop. The study showed that application of P as well as cyanobacteria could help in improving productivity of legumes under elevated CO2 condition.


2017 ◽  
Vol 68 (9) ◽  
pp. 1585 ◽  
Author(s):  
Stephen R. Midway ◽  
Caleb T. Hasler ◽  
Tyler Wagner ◽  
Cory D. Suski

Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2 (pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96P. promelas were consumed (n=96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.


2017 ◽  
Vol 74 (7) ◽  
pp. 1893-1905 ◽  
Author(s):  
Alexander J. Bergan ◽  
Gareth L. Lawson ◽  
Amy E. Maas ◽  
Zhaohui Aleck Wang

Abstract Shelled pteropods are planktonic molluscs that may be affected by ocean acidification. Limacina retroversa from the Gulf of Maine were used to investigate the impact of elevated carbon dioxide (CO2) on shell condition as well as swimming and sinking behaviours. Limacina retroversa were maintained at either ambient (ca. 400 µatm) or two levels of elevated CO2 (800 and 1200 µatm) for up to 4 weeks, and then examined for changes in shell transparency, sinking speed, and swimming behaviour assessed through a variety of metrics (e.g. speed, path tortuosity, and wing beat frequency). After exposures to elevated CO2 for as little as 4 d, the pteropod shells were significantly darker and more opaque in the elevated CO2 treatments. Sinking speeds were significantly slower for pteropods exposed to medium and high CO2 in comparison to the ambient treatment. Swimming behaviour showed less clear patterns of response to treatment and duration of exposure, but overall, swimming did not appear to be hindered under elevated CO2. Sinking is used by L. retroversa for predator evasion, and altered speeds and increased visibility could increase the susceptibility of pteropods to predation.


Author(s):  
Ayman EL Sabagh ◽  
Akbar Hossain ◽  
Mohammad Sohidul Islam ◽  
Muhammad Aamir Iqbal ◽  
Ali Raza ◽  
...  

The rising concentration of atmospheric carbon dioxide (aCO2) and increasing temperature are the main reasons for climate change, which are significantly affecting crop production systems in this world. However, the elevated carbon dioxide (CO2) concentration can improve the growth and development of crop plants by increasing photosynthetic rate (higher availability of photoassimilates). The combined effects of elevated CO2 (eCO2) and temperature on crop growth and carbon metabolism are not adequately recognized, while both eCO2 and temperature triggered noteworthy changes in crop production. Therefore, to increase crop yields, it is important to identify the physiological mechanisms and genetic traits of crop plants which play a vital role in stress tolerance under the prevailing conditions. The eCO2 and temperature stress effects on physiological aspects as well as biochemical profile to characterize genotypes that differ in their response to stress conditions. The aim of this review is directed the open-top cavities to regulate the properties like physiological, biochemical, and yield of crops under increasing aCO2, and temperature. Overall, the extent of the effect of eCO2 and temperature response to biochemical components and antioxidants remains unclear, and therefore further studies are required to promote an unperturbed production system.


2017 ◽  
pp. 197-201
Author(s):  
Ágnes Törő ◽  
András Tamás ◽  
András Vántus ◽  
Tamás Rátonyi ◽  
Endre Harsányi

Emissions of carbon dioxide (CO2) have deserved more and more attention of humanity since decades, but inspite of theme asures already taken there are no substantial results. CO2 is a very important chemical, one of the greenhouse gases, which on the one hand offsets the cooling of the Earth, but on the other hand the too high CO2 emission leads to the global warming. The emission from the soil contributes substantially to the global cycle. This type of emission is influenced by the soil moisture, temperature, the soil quality and the cultivation. Through our measurements we have studied the relationships between the type of cultivation and the emissions of carbon dioxide.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Dody Hidayat

Kebakaran dapat terjadi dimana saja salah satunya dapat terjadi di alat transportasi air yakni kapal. Kebakaran selalu menyebabkan hal-hal yang tidak diinginkan baik kerugian material maupun ancaman keselamatan jiwa manusia. Seiring dari kejadian tersebut musibah kecelakaan kapal yang disebabkan oleh bahaya kebakaran sangatlah mungkin terjadi. Salah satu yang dapat mencegah kejadian kebakaran pada kapal haruslah dapat mendeteksi dini kebakaran tersebut. Untuk mendeteksi dini terjadinya kebakaran dikapal maka dirancanglah sebuah alat proteksi kebakaran otomatisberbasis adruino. Dimana Arduino merupakan board yang memiliki sebuah mikrokontroller sebagai  otak kendali sistem. Sistem otomatisasi atau controller tidak akan terlepas dengan apa yang disebut  dengan ‘sensor’. Sensor adalah sebuah alat untuk mendeteksi atau mengukut sesuatu yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. sistem yang dirancang ini dilengkapi dengan beberapa sensor diantaranya adalah sensor apiUV-Tron R2868, sensor asap MQ-2 dan kemudian sensor suhuDS18B20. Mikrokontroller sebagai pengendali akan merespon input yang berupa sensor tersebut ketika data yang dibaca oleh sensor mendeteksikebakaran diantaranya mendeteksi adanya asap, kemudian api dan suhu. Sebagai output dari sistem berupa racun api (fire extinguisher)dimana kandungan yang ada pada racun api tersebut berupa Dry Chemical Powder dan Carbon Dioxide (CO2) yang fungsinya digunakan untuk memadamkan api serta dilengkapi buzzer sebagai alarm peringatan jika terjadi kebakaran. 


2012 ◽  
Author(s):  
William R. Howard ◽  
Brian Wong ◽  
Michelle Okolica ◽  
Kimberly S. Bynum ◽  
R. A. James

2020 ◽  
Vol 25 (44) ◽  
pp. 4656-4661 ◽  
Author(s):  
Nikolaos Patelis ◽  
Mikes Doulaptsis ◽  
Stylianos Kykalos ◽  
Eleftherios Spartalis ◽  
Anastasios Maskanakis ◽  
...  

Background: Carbon dioxide (CO2) exists in nature around us. In the middle of the 20th century, the intraluminal injection of CO2 demonstrated similar results to those of Digital Subtraction Angiography (DSA) with an iodinated contrast agent (ICA). Since then, the technology behind CO2 DSA has developed significantly. Objective: The aim of this study is to inform physicians about the unique properties of CO2 and its physiology after intraluminal injection. Methods: An extensive search for English literature on the properties of CO2 and the physiology of intraluminal administration was conducted using Pubmed. Results: There is sufficient literature on the properties of CO2 and the physiology of CO2 DSA. A review of this literature explains what happens to the human organism after the injection of CO2. Conclusions: There is enough evidence that CO2 DSA is both effective, diagnostic and safe, but the properties of CO2 should be taken under consideration as complications occur, although rarely.


Sign in / Sign up

Export Citation Format

Share Document