Potent inhibition of HIV-1 gene expression and TAT-mediated apoptosis in human T cells by novel mono- and multitarget anti-TAT/Rev/Env ribozymes and a general purpose RNA-cleaving DNA-enzyme

2006 ◽  
Vol 72 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Hoshang Unwalla ◽  
Samitabh Chakraborti ◽  
Vikas Sood ◽  
Nidhi Gupta ◽  
Akhil C. Banerjea
2007 ◽  
Vol 282 (22) ◽  
pp. 15973-15980 ◽  
Author(s):  
Derek Holmes ◽  
Geoffry Knudsen ◽  
Stephanie Mackey-Cushman ◽  
Lishan Su

2010 ◽  
Vol 6 (10) ◽  
pp. 1983 ◽  
Author(s):  
Daniel Remondini ◽  
Stefano Salvioli ◽  
Mirko Francesconi ◽  
Michela Pierini ◽  
Dawn J. Mazzatti ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


Author(s):  
Friederike Knipping ◽  
Gregory A. Newby ◽  
Cindy R. Eide ◽  
Amber N. McElroy ◽  
Sarah C. Nielsen ◽  
...  

2021 ◽  
Author(s):  
Ishak D. Irwan ◽  
Bryan R. Cullen

AbstractWe have previously reported that the normally essential step of integration of the HIV-1 proviral DNA intermediate into the host cell genome becomes dispensable in T cells that express the Human T cell leukemia virus 1 (HTLV-1) Tax protein. The rescue of integrase (IN) deficient HIV-1 replication by Tax results from the strong activation of transcription from the long terminal repeat (LTR) promoter on episomal HIV-1 DNA, an effect that is closely correlated with the recruitment of activating epigenetic marks, such as H3Ac, and depletion of repressive epigenetic marks, such as H3K9me3, from chromatinized unintegrated proviruses. In addition, activation of transcription from unintegrated HIV-1 DNA coincides with the recruitment of NF-kB to the two NF-kB binding sites found in the HIV-1 LTR enhancer. Here we report that the recruitment of NF-kB to unintegrated viral DNA precedes, and is a prerequisite for, Tax-induced changes in epigenetic marks, so that an IN-HIV-1 mutant lacking both LTR NF-kB sites is entirely non-responsive to Tax and fails to undergo the epigenetic changes listed above. We also report that heterologous promoters introduced into IN-HIV-1-based vectors are transcriptionally active even in the absence of Tax. Finally, we failed to reproduce a recent report arguing that heterologous promoters introduced into IN-vectors based on HIV-1 are more active if the HIV-1 promoter and enhancer, located in the LTR U3 region, are deleted, in a so-called self inactivating or SIN lentivector design.ImportanceIntegrase-deficient expression vectors based on HIV-1 are becoming increasingly popular as tools for gene therapy in vivo due to their inability to cause insertional mutagenesis. However, many IN-lentiviral vectors are able to achieve only low levels of gene expression and methods to increase this low level have not been extensively explored. Here we analyze how the HTLV-1 Tax protein is able to rescue the replication of IN-HIV-1 in T cells and describe IN-lentiviral vectors that are able to express a heterologous gene effectively.


2005 ◽  
Vol 79 (4) ◽  
pp. 2199-2210 ◽  
Author(s):  
Yan Zhou ◽  
Haili Zhang ◽  
Janet D. Siliciano ◽  
Robert F. Siliciano

ABSTRACT In untreated human immunodeficiency virus type 1 (HIV-1) infection, most viral genomes in resting CD4+ T cells are not integrated into host chromosomes. This unintegrated virus provides an inducible latent reservoir because cellular activation permits integration, virus gene expression, and virus production. It remains controversial whether HIV-1 is stable in this preintegration state. Here, we monitored the fate of HIV-1 in resting CD4+ cells by using a green fluorescent protein (GFP) reporter virus carrying an X4 envelope. After virus entry into resting CD4+ T cells, both rescuable virus gene expression, visualized with GFP, and rescuable virion production, assessed by p24 release, decayed with a half-life of 2 days. In these cells, reverse transcription goes to completion over 2 to 3 days, and 50% of the viruses that have entered undergo functional decay before reverse transcription is complete. We distinguished two distinct but closely related factors contributing to loss of rescuable virus. First, some host cells undergo virus-induced apoptosis upon viral entry, thereby reducing the amount of rescuable virus. Second, decay processes directly affecting the virus both before and after the completion of reverse transcription contribute to the loss of rescuable virus. The functional half-life of full-length, integration-competent reverse transcripts is only 1 day. We propose that rapid intracellular decay processes compete with early steps in viral replication in infected CD4+ T cells. Decay processes dominate in resting CD4+ T cells as a result of the slow kinetics of reverse transcription and blocks at subsequent steps. Therefore, the reservoir of unintegrated HIV-1 in recently infected resting CD4+ T cells is highly labile.


2008 ◽  
Vol 63 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Yaseen A. Al-Soud ◽  
Haitham H. Al-Sa’doni ◽  
Houssain A. S. Amajaour ◽  
Kifah S. M. Salih ◽  
Mohammad S. Mubarakb ◽  
...  

A new series of coumarin and benzofuran derivatives were synthesized as potential non-nucleoside reverse transcriptase inhibitors (NNRTIs) by reacting, separately, 4-bromomethylcoumarins, their sulphonyl chlorides, and ethyl 3-(bromomethyl)-6-methoxy-1-benzofuran-2-carboxylate with different imidazoles and their benzo analogs. The antiviral (HIV-1, HIV-2) properties of the newly synthesized compounds were investigated in vitro and all compounds were found to be inactive, except 10 which showed inhibition of HIV-2 with EC50 > 0.51 μgmL−1. The in vitro cytotoxicity of 17 and 19 was assayed against a panel of tumor cell lines consisting of CD4 human T-cells.


1993 ◽  
Vol 13 (10) ◽  
pp. 6180-6189 ◽  
Author(s):  
M H Malim ◽  
B R Cullen

Although a great deal is known about the regulation of gene expression in terms of transcription, relatively little is known about the modulation of pre-mRNA processing. In this study, we exploited a genetically regulated system, human immunodeficiency virus type 1 (HIV-1) and its trans-activator Rev, to examine events that occur between the synthesis of pre-mRNA in the nucleus and the translation of mRNA in the cytoplasm. Unlike the majority of eukaryotic pre-mRNAs whose introns are efficiently recognized and spliced prior to nucleocytoplasmic transport, HIV-1 mRNAs containing functional introns must be exported to the cytoplasm for the expression of many viral proteins. Using human T cells containing stably integrated proviruses, we demonstrate that such incompletely spliced viral mRNAs are exported to the cytoplasm only in the presence of the Rev trans-activator. In the absence of Rev, these intron-containing RNAs are sequestered in the T-cell nucleus and either spliced or, more commonly, degraded. Because Rev does not inhibit the expression of fully spliced viral mRNA species in T cells, we propose that Rev, rather than inhibiting viral pre-mRNA splicing, is acting here both to prevent the nuclear degradation of HIV-1 pre-mRNAs and to induce their translocation to the cytoplasm. Taken together, these findings indicate that the cellular factors responsible for the nuclear retention of unspliced pre-mRNAs, although most probably splicing factors, do not invariably commit these RNAs to productive splicing and can, instead, program such transcripts for degradation.


2020 ◽  
Vol 48 (19) ◽  
pp. 10890-10908
Author(s):  
Smitha Srinivasachar Badarinarayan ◽  
Irina Shcherbakova ◽  
Simon Langer ◽  
Lennart Koepke ◽  
Andrea Preising ◽  
...  

Abstract Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


Sign in / Sign up

Export Citation Format

Share Document