Analysis of double-layered buffer in high-level waste repository

2022 ◽  
Vol 165 ◽  
pp. 108660
Author(s):  
Yunzhi Tan ◽  
Xun Xu ◽  
Huajun Ming ◽  
De'an Sun
1995 ◽  
Vol 412 ◽  
Author(s):  
C. Oda ◽  
H. Yoshikawa ◽  
M. Yui

AbstractPalladium solubility was measured in a dilute aqueous solution at room temperature in the pH range from 3 to 13 under anaerobic conditions. Crystalline Pd metal was clearly visible and the concentration of palladium in solution decreased gradually with aging time. The palladium concentrations in solution were less than 9.4×10-10M in the pH range from 4 to 10 and increased to 10-7M in the pH range greater than 10. This study suggests that palladium concentrations in certain high-level waste repository environments may be limited by Pd metal and may be less than 10-9M.


2000 ◽  
Vol 88 (9-11) ◽  
Author(s):  
S.L. Matzen ◽  
J.M. Beiriger ◽  
P.C. Torretto ◽  
P. Zhao ◽  
B.E. Viani

In a high level waste repository in which temperatures are elevated due to waste decay, concrete structures will be subjected to hydrothermal conditions that will alter their physical and chemical properties. Virtually no studies have examined the interaction of hydrothermally altered concrete with radionuclides. We present the results of experiments in which soluble and colloid-associated U and Np, were eluted into a fractured, hydrothermally altered concrete core. Although the fluid residence time in the fracture was estimated to be on the order of 1 minute, U and Np in the effluent from the core were below detection (10


1997 ◽  
Vol 506 ◽  
Author(s):  
V. M. Oversby

ABSTRACTThe conditions that are needed to achieve criticality in a high level waste repository for spent nuclear reactor fuel are reviewed. The effect of initial enrichment of the fuel, burnup, and of mixed oxide fuels on the conditions for criticality are discussed. The situations that produced criticality at Oklo, Gabon, 2000 million years ago are summarized. A model based on the Oklo conditions is presented for estimating the amount of fissile material that must be assembled to create a critical mass in typical granitic rocks. Mechanisms for movement of uranium and plutonium to achieve a critical configuration are discussed and compared to the conditions that are likely to occur in a repository in granite. The sequences of events needed to produce a critical assemblage are shown to be in conflict with the conditions expected in the repository and, in some cases, to require internally inconsistent assumptions to produce the postulated sequence of events. No credible scenario for achieving criticality in a high level waste repository has been found.


Sign in / Sign up

Export Citation Format

Share Document